Measuring and Estimating Process Performance

Richard D. Stutzke

Science Applications International Corp. 6725 Odyssey Drive Huntsville, Alabama 35806 USA (256) 971-6528 (office) (256) 971-6678 (facsimile) (256) 971-6562 (asst)

14-17 November 2005

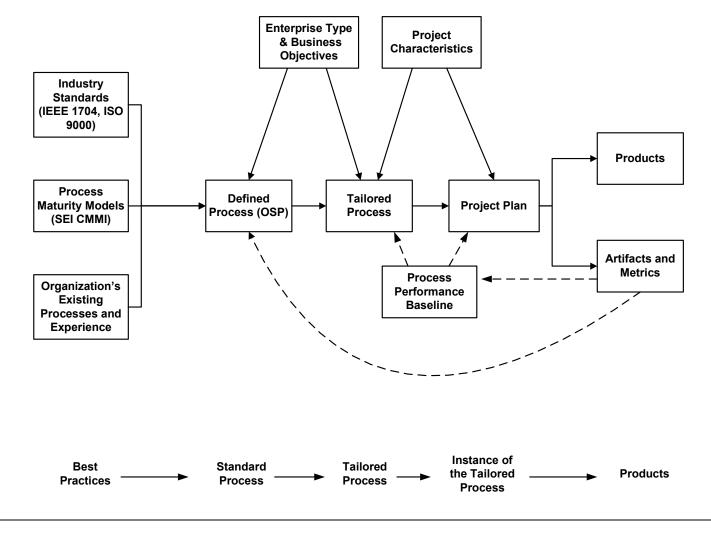
Presented at the 5th Annual CMMI Technology Conference & Users Group Meeting Denver, Colorado

CMMI User 2005 (14NOV05)

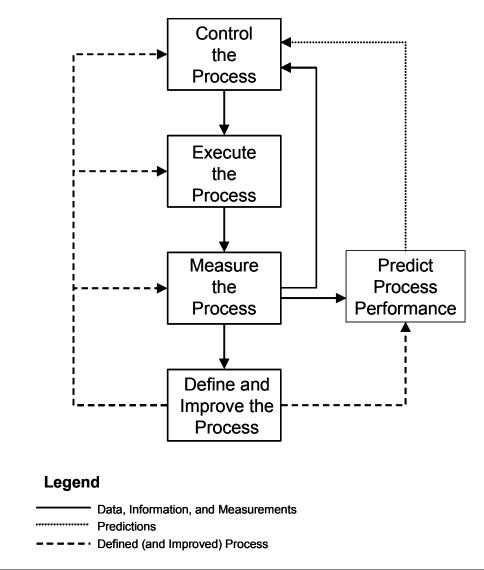
© 2005 by R. Stutzke

Topics

- Defining and Controlling Production Processes
- Measuring Process Performance
- Predicting Process Performance
- References


Definition of Process

A set of activities, methods, practices, and tools that people use to develop and maintain a product and its associated work products (e.g., plans, design documents, code, test cases, and user manuals).


Types of Process Models

- Capability Maturity Model
 - Best Practices
 - "Ought to"
- Process Architecture
 - Project life cycle model
 - Activities, artifacts, and timing
 - High-level "How to"
 - Basis for early planning
- Defined Process
 - Organization's Standard Process (OSP)
 - Detailed "How to" plus aids (template tools)
- **Project's Tailored Process**
 - Selected subset of the OSP
 - Some elements may be tailored
 - Basis for detailed planning (budget, status) and improvement

From Best Practices to Products

Process Control: Measurements + Models

Measuring Process Performance

• Key Questions

- What is the current performance?
- Is this value "good"?
- Is it changing?
- How can I make the value "better"?
- Candidate Attributes*
 - **Definition (completeness, compatibility)**
 - Usage (compliance, consistency)
 - Stability (repeatability, variability)
 - Effectiveness (capability)
 - Efficiency (productivity, affordability)
 - Predictive Ability (accuracy, effects of tailoring and improvements)

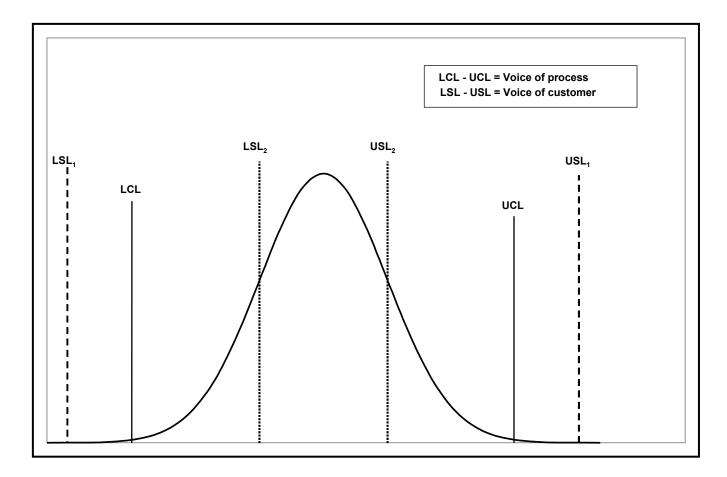
*Motivated by [Florac, 1999, Section 2.4]

Some Examples

Goal	Measure
Completeness	The number of process elements added, changed, and deleted during tailoring.
Compliance	Number of discrepancy reports generated by Quality Assurance audits
Stability (volatility)	The number of process elements changed within a specified time interval.
Effectiveness	Product quality
Effectiveness	Defect leakage to subsequent phases
Efficiency	Productivity (or production coefficient)
Efficiency	Rework as a fraction of total effort
Predictability	Probability distribution for an estimated quantity or related population statistics

Choosing Your Measures

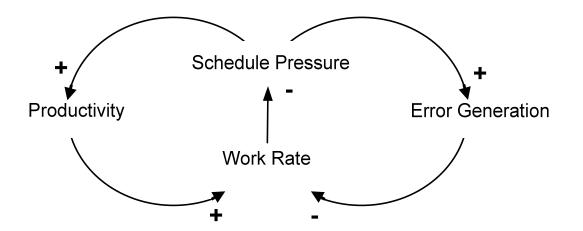
- Measurement costs money
 - Choose what is useful (e.g., use Goal Question Measure)
 - Your needs will change over time
- Factors to consider:
 - Business objectives
 - Customer desires
 - Government regulations and statutes

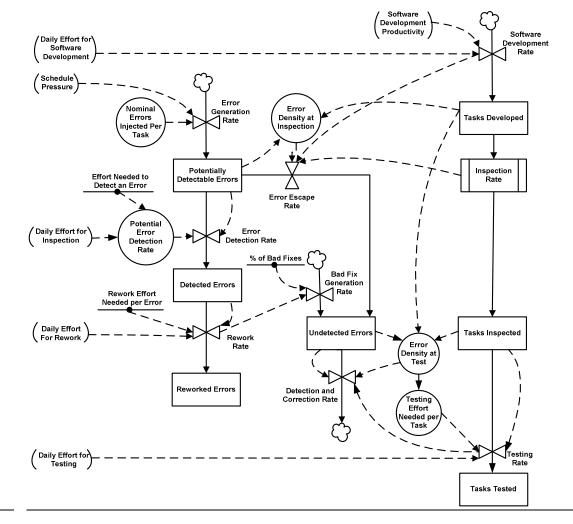

Predicting Process Performance

- Key Questions
 - How do process parameters affect project productivity, cost, and schedule?
 - How do process parameters affect product quality?
 - How can I improve the process? (What is the increase in product quality if I invest more effort in design instead of testing?)
- Process Performance Model
 - Makes quantitative predictions about a particular production process
 - May estimate resource consumption, time delays, effectiveness, and efficiency

Types of Process Performance Models

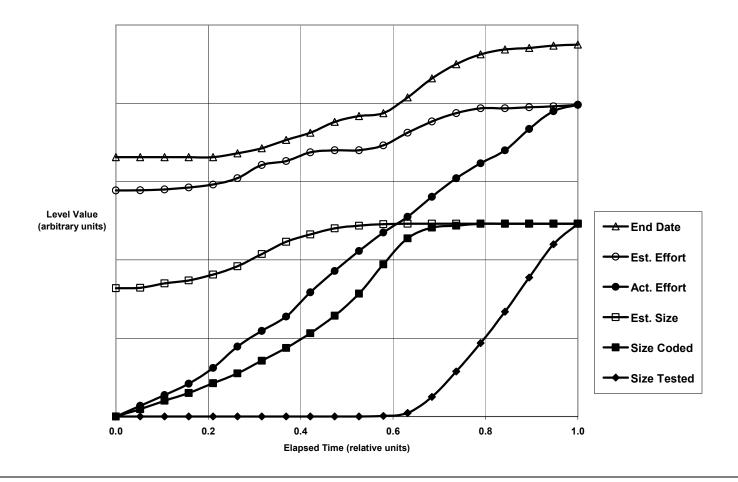
Туре	Handles Unstable Processes?	Representation of Process Mechanisms	Examples
Statistical	No	None	Statistical process control
Functional	No	Explicit	Parametric models (algorithms based on causal mechanisms). COQUALMO and staged models.
Dynamic	Yes	Implicit (via propagation)	System dynamics models (Coupled equations embody the causal mechanisms. Solving numerically gives predicted behavior.)


Statistical Process Control


Sample Defect Leakage Matrix

	Phase Detected					
Phase Injected	Analysis	Design	Code	Integ. Test	Alpha Test	Beta Test
Analysis	98.0	6.0	12.0	14.0	27.0	18.0
Design		142.0	38.0	23.0	17.0	8.0
Code			114.0	61.0	23.0	4.0
Integ. Test				16.0	2.0	1.0
Alpha Test					2.0	0.0
Beta Test						1.0

System Dynamics Model: Concept



System Dynamics Model: Relationships for CoSQ

CMMI User 2005 (14NOV05)

System Dynamics Model: Sample Output

© 2005 by R. Stutzke

Summary

- Measures help control the production process
- The choice of process performance measures depends on organizational goals
- Predictive models supplement measures
- Predictive accuracy depends on
 - The process definition (detail, stability, tailoring)
 - The process execution (compliance, consistency)
 - The model's scope and validity (relevant factors and interactions, fidelity)

References

[Ahern, 2004]	"CMMI SM Distilled: A Practical Introduction to Integrated Process Improvement", 2 nd edition, Dennis M. Ahern, Aaron Clouse, and Richard Turner, Addison-Wesley, 2004, ISBN 0-321-18613-3.
[Barros, 2000]	"Using Process Modeling and Dynamic Simulation to Support Software Process Quality Management", Márcio de Oliveria Barros, Cláudia Maria Lima Werner, and Guilherme Horta Travassos, Annals of the Workshop on Software Quality, Proceedings of the XIV Brazilian Software Engineering Symposium, João Pessoa, PB, Brazil, October 2000.
[Fleming, 2000]	"Earned Value Project Management", 2 nd edition, Quentin W. Fleming and Joel M. Koppelman, Project management Institute, 2000, ISBN 1-880410-27-3.
[Florac, 1999]	"Measuring the Software Process: Statistical Process Control for Software Process Improvement", William A. Florac and Anita D. Carlton, Addison-Wesley, 1999, ISBN 0-201-60444-2.
[Kan, 2003]	"Metrics and Models in Software Quality Engineering", 2 nd edition, Stephen H. Kan, Addison-Wesley, 2003, ISBN 0-201-72915-6.
[Madachy, 2005]	"Software Process Modeling with System Dynamics", Raymond J. Madachy and Barry W. Boehm, John Wiley & Sons, 2005, ISBN 0-471-27555-0.
[McGarry, 2002]	"Practical Software Measurement: Objective Information for Decision Makers", John McGarry, David Card, Cheryl Jones, Beth Layman, Elizabeth Clark, Joseph Dean, and Fred Hall, Addison-Wesley, 2002, ISBN 0-201-71516-3
[Stutzke, 2005]	"Estimating Software-Intensive Systems: Projects, Products, and Processes," Richard D. Stutzke, Addison-Wesley, 2005, ISBN 0-201-70312-2.