

Journeys on the Road to Level 5

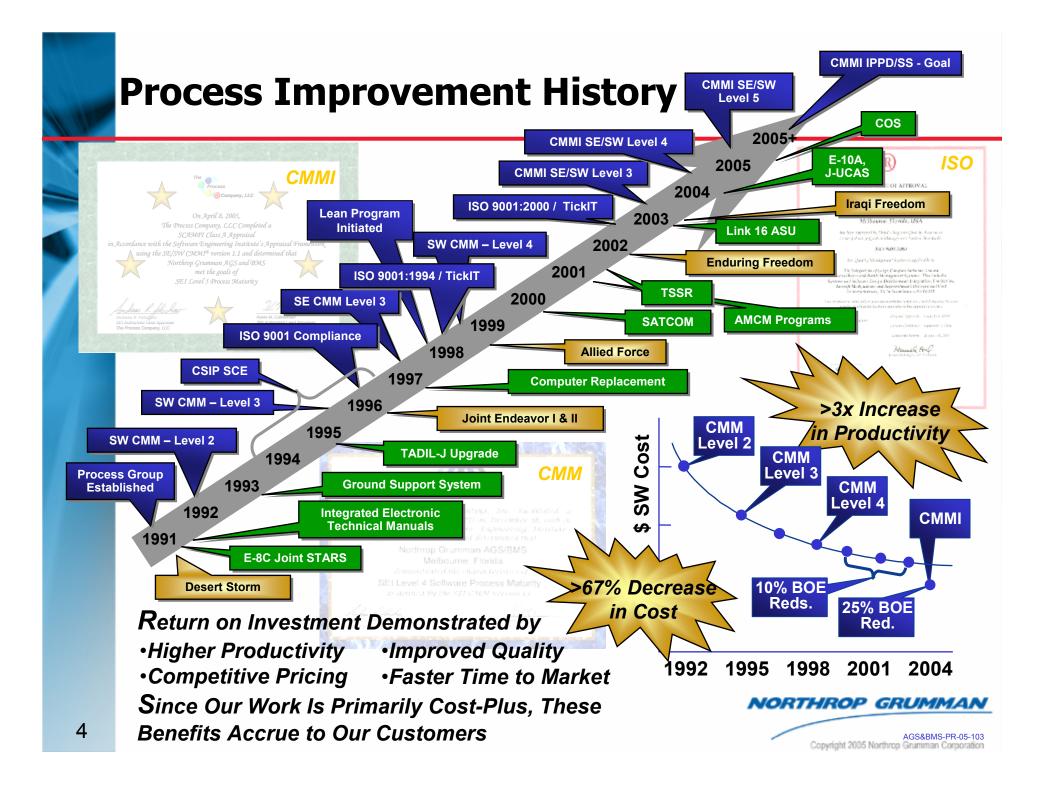
16 November 2005

Joseph V. Vandeville Richard L. W. Welch, PhD Northrop Grumman Corporation

Agenda

- Our Process Improvement History
- The Infrastructure That Made It Work
- New Attitudes In Using Metrics
- Is Level 5 The End . . . Or The Beginning

Northrop Grumman Today


- 125,000 people, 50 states, 25 countries
- Largest manufacturing employer in Louisiana, Mississippi, Virginia, Maryland
- One of top three defense contractors
- Leading systems integrator
- Largest military shipbuilder
- Largest provider of airborne radar and electronic warfare systems
- One of two top IT providers to the U.S. Government
- One of three major contractors in military and civil space, missile defense

More than \$31 Billion in 2004 Sales

Infrastructure for Innovation

Corporation & **Business Area**

- Corporate goals
- Business Area goals
- Direction, Guidance
- Resources
- Engineering goals, objectives

Status reporting

Engineering Steering Committee

Engineering

Process Group

(EPG)

- Engineering Directors
- Quality Director
- Executive Management Representative
- Improvement proposals
- Process performance status reporting
 - Full Time EPG Chairperson
 - Representatives from Program and project each Engineering Directorate
- Software Quality representative
 - representatives

Software Engineering Process Group (SEPG)

Software practitioners and relevant stakeholders to improve software specific processes

Process Management Teams (PMT)

Multi-disciplinary teams empowered to evaluate and continuously improve broad engineering processes

Process Working Groups

Teams established as needed

NORTHROP GRUMMAI

5

Copyright 2005 Northrop Grumman Corporation

Steering Committee

Comprises

- Engineering Director
- Directors from Each Engineering Directorate
 (Systems, Software, Test, Vehicle, Avionics, Logistics)
- Quality Operations
- Business Area Management Rep
- Project Engineering Managers
- Program Managers
- Engineering Process Group
- Meets Every Week to Review Process Improvement Status with EPG and Project Practitioners
- Government Reps Invited to Meetings

Engineering Process Group (EPG)

- Made Up of Process Definition and Management Personnel in Each Engineering Directorate
- Facilitates Process Improvement across the Engineering Department
- Maintains Process Assets for Use by the Organization
- Coordinates with Organizations Outside of Engineering to Ensure Proper and Efficient Process Interfaces
- Facilitates Compliance with Appropriate Process Standards and Models (E.G., ISO 9001, CMMI)
- Manages Engineering Process Management Teams
- Develops and Maintains Relationships with Universities, Research Labs and Related Consortia to Support Engineering Goals

Process Management Teams

Focusing Lean on Significant Issues

Support Team: Facilitators **Engineering PMT Steering Committee**

Software Engineering

COTS and PME

Logistics Commodities System Integration Labs

Systems
Engineering
Life Cycles

Test and Integration

ILS Processes Vehicle Engineering

Engineering PMTs – General Goals

- Map Process Value Stream for the Production of Relevant Products
- Determine Non-Value Added Activities
 - Recognize That Some of These May Be Required by Customers or Business Needs
- Identify Issues or Concerns Regarding the Process or Product
 - Execute Causal Analysis & Resolution Process As Needed
- Determine Alternatives to the Current Way of Doing Business
 - Propose "Best" Alternatives in Terms of Cost, Schedule, Quality or Productivity Improvements
- Present Alternatives to Steering Committee for Selection for Implementation

CMMI Higher Levels – Differences in Behavior

At Level 3.....

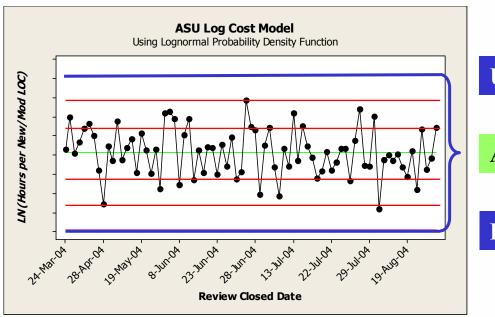
- Management Reacts
 - Comparative Rather Than Statistical Analysis
 - Process Capability Not Understood
- Measurement Program
 - Data Available for Analysis
 - Analysis at Project Level
 - Data Quality Often Still a Concern

At Level 4.....

- Management Anticipates
 - Predicting Results of Critical Processes
 - Evaluating Outcomes Relative to Capability
- Measurement Program
 - Data Relied on for Decision-making
 - Data Analyzed at Organization and Project Levels

At Level 5.....

- Management Performs "Pre-emptive Strikes"
 - Identifying & Removing Systemic Process Issues
 - Predicting Results of Innovative Improvements
- Measurement Program
 - Data Relied on for Cost/Benefit Analysis
 - Benefits Forecasted for Technology or Process Optimization


Using Metrics for Higher Maturity

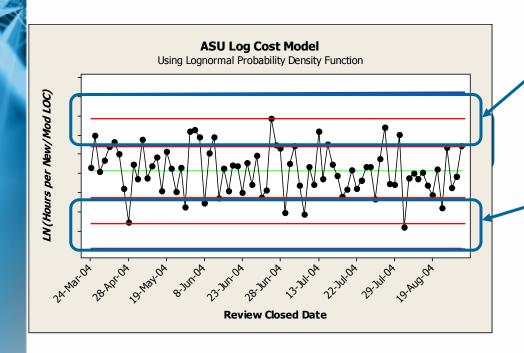
- Estimating
 - Base Estimates Of Future Performance On Past Performance
- Project Planning
 - Determine Resources Needed For Project Execution
- Project Tracking
 - Determine Whether Actual Performance Matches Predictions
- Quantitative Management Higher Maturity Uses of Metrics
 - Determine Whether Project Objectives Are Likely To Be Met
- Process Improvement
 - Determine Whether Process Changes Have Improved Performance

Voice of the Process

Quantitative Sub-Process Management

Upper Control Limit

Average performance


Lower Control Limit

A Stable Process

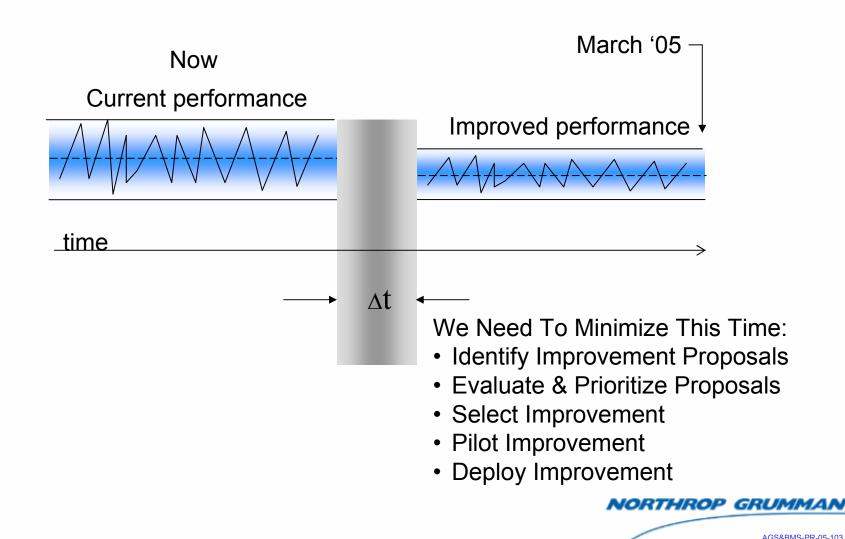
- Operates Within the Control Limits 99.7% of the Time
- Meets Budget
- Offers Opportunities for Systematic Process Improvement

Improving the Process

Peer Reviews Greater
Than 1 Standard Deviation
Above the Average of Peer
Review Performance

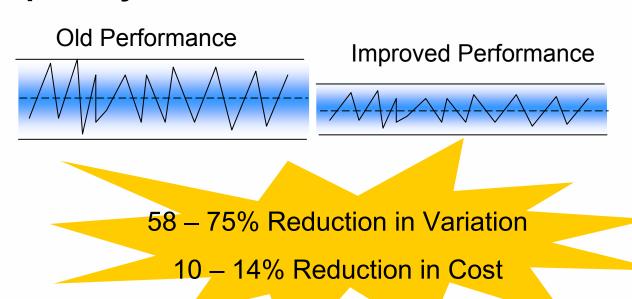
Peer Reviews Greater
Than 1 Standard
Deviation Below the
Average of Peer Review
Performance

Question: Is There a Common Cause for the Variation in Either of These Two Sub-populations of the Peer Review Data?



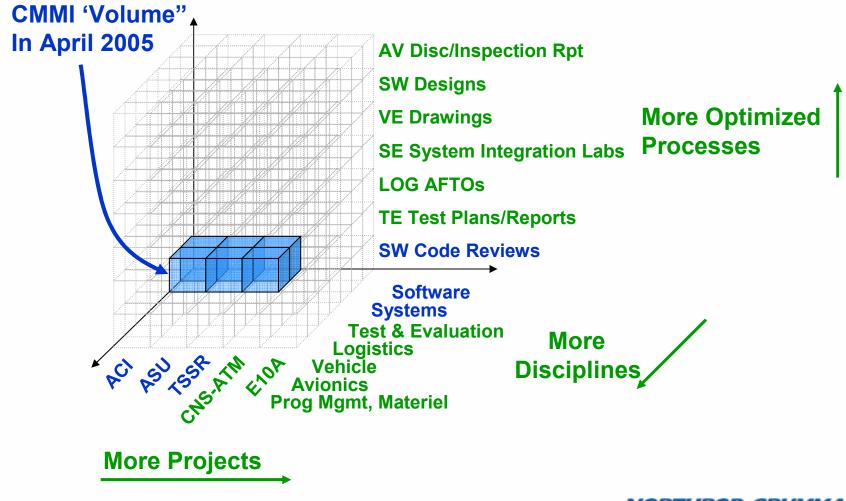
Develop Candidate Solutions (Example)

	Proposed Solution	Comments for Evaluation
8	Count the actual code reviewed (vs. just new or modified code)	This is a potential BOE issue and needs criteria for setting boundaries for code to be reviewed
1	Increase the complexity factor for small reviews	For 2 or less SLOC/unit set complexity to "10". For other small reviews this may need a "calibration chart" to determine appropriate complexity factors
	For small reviews, select a different verification method	The <u>different</u> verification method will need definition. Q: Are these all Engineering Checks? More analysis may be needed.
	Automate the administrative work Required to set up peer reviews (e.g., create diff files, place files into a directory/CMS,)	This change would impact all reviews – not just the sub-population. Need to evaluate the impact to the overall population


Improvement in Process Performance

Copyright 2005 Northrop Grumman Corporation

Deploying Improvements


- Publish a New Organization Baseline for the Improved Process
- Deploy New Process Objectives To Project
- Deploy New Process To Project
- Monitor New Process Performance Against New Capability

Growing the Capability

What happens after Level 5 . . .

QUESTIONS

Joseph V. Vandeville

Northrop Grumman Corporation (321) 951-5287 joseph.vandeville@ngc.com

Richard L. W. Welch, PhD Northrop Grumman Corporation (321) 951-5072 rick.welch@ngc.com

Copyright 2005 Northrop Grumman Corporation