NORTHROP GRUMMAN

DEFINING THE FUTURE

Logarithms Can Be Your Friends

Controlling Peer Review Costs

November 16, 2005

Richard L. W. Welch, PhD Chief Statistician Northrop Grumman Corporation

Topics

- Business Objectives
- CMMI Requirements for Sub-process Control
- Why Peer Reviews?
- Data Characteristics and Difficulties
- Log-Return Model / Log-Cost Model
- **The Lognormal Distribution**
- Our Code Walkthrough Data on Logs
- Expanding the Capability
- Summary

Enhancing Joint STARS Capabilities

CMMI Higher Levels – Differences in Behavior

At Level 3.....

- Management Reacts
 - Comparative Rather Than Statistical Analysis
 - Process Capability Not Understood
- Measurement Program
 - Data Available for Analysis
 - Analysis at Project Level
 - Data Quality Often Still a Concern

At Level 4.....

- Management Anticipates
 - Predicting Results of Critical Processes
 - Evaluating Outcomes Relative to Capability
- Measurement Program
 - Data Relied on for Decision-making
 - Data Analyzed at Organization and Project Levels

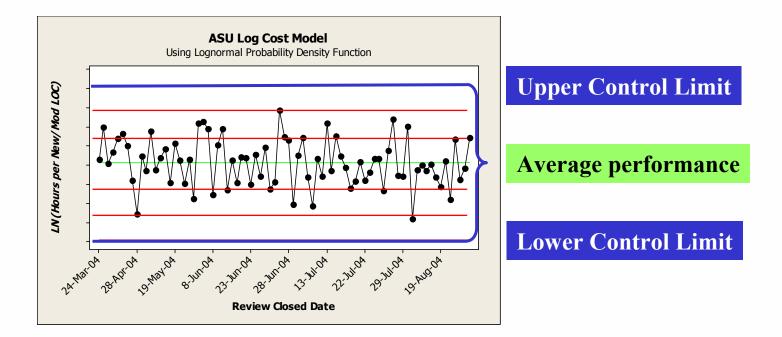
At Level 5.....

- Management Performs "Pre-emptive Strikes"
 - Identifying & Removing Systemic Process Issues
 - Predicting Results of Innovative Improvements
- Measurement Program
 - Data Relied on for Cost/Benefit Analysis
 - Benefits Forecasted for Technology or Process Optimization

NORTHROP GRUMMAN

Quantitative Management

CMMI Level 4


Establish an Organizational Baseline and Models of Process Performance

- Average Performance (Effort, Duration, Quality, ...)
- Range of Performance Variation
- Contribution of Sub-process Performance to Higher Level Processes
- Manage Project To Achieve Quantitative Process Performance Goals
 - Establish Project Goals Based on Organizational Performance
 - Select Sub-processes To Quantitatively Manage
 - Demonstrate Quantitative Control
 - Identify and Correct Special Causes of Performance Variation
 - Feed Data Back to the Organization

Northrop Grumman

Voice of the Process

Quantitative Sub-Process Management

- A Stable Process
 - Operates Within the Control Limits 99.7% of the Time
 - Meets Budget
 - Offers Opportunities for Systematic Process Improvement

NORTHROP GRUMMAN

Copyright 2005 Northrop Grumman Corporation

AGS&BMS-PR-05-104

Why Peer Reviews?

Ubiquity

- Many Work Products Reviewed Throughout Software Development Life Cycle
 - Design Artifacts
 - Code
 - Test Plan, Procedures & Reports

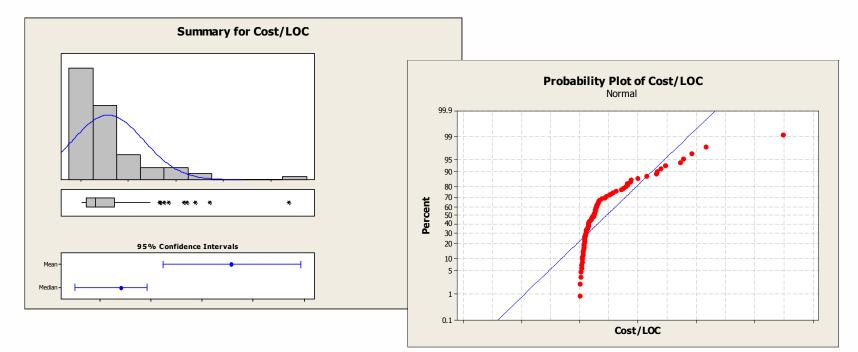
Frequency

High Data Rates

Influence

- Approximately 10% of the Software Development Effort Is Spent on Peer Reviews and Inspections
- Code Walkthroughs Represent Biggest Opportunity

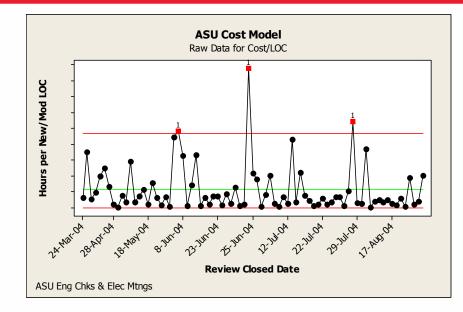
Prior State


SW-CMM Level 4

- Software Development Baseline Characterized by Life Cycle Phase
 - SW Requirements-Design-Code & Verification-SW Integration-System Test
 - 10+ Year Process Improvement Record Resulted in Costs Reduced by Over 67%
- Lower Level Elements Tracked and Managed with Earned Value System
- No "Above the Shop Floor" Experience with Statistical Sub-process Control
- Issues with Peer Review Quality
 - Inconsistent Data
 - Superficial Results

Data Characteristics

Raw Data



Andersen-Darling Test p < 0.005

Data Non-normality Violates Probability Model

Can Code Walkthroughs Be Controlled?

Difficulties

- 11% False Alarm Rate (Chebyshev's Inequality)
 - Penalizes Due Diligence in Reviewing Code
- No Meaningful Lower Control Limit
 - Does Not Flag Superficial Reviews
- Arithmetic Mean Distorts the Central Tendency
 - Apparent Cost Will Not Meet Budget

Log-Return Model

Stock Sales

- Consider a stock sale in terms of the number of shares sold for a certain price
- The natural logarithm of the difference between the current and the next per share sale price is normally distributed with zero mean and a constant standard deviation
- Cost basis
 - \$s per Share Stock Price

Log-Cost Model

Peer Reviews

- Consider a code walkthrough in terms of the number of lines of code reviewed in a certain number of hours
- By analogy, the natural logarithm of the difference in cost between the current and the next peer review will be normally distributed with zero mean and a constant standard deviation
- Cost Basis
 - Hours per Line of Code Reviewed

NORTHROP GRUMMAN

Copyright 2005 Northrop Grumman Corporation

AGS&BMS-PR-05-104

Consequences

Log-Return Model **Stock Sales**

- Stock prices themselves are lognormally distributed
- The natural logarithms of stock prices follow a normal distribution
- Thus, the log-return data meet the assumptions needed for successful control charting

Log-Cost Model **Peer Reviews**

- Peer review costs are lognormally distributed
- The natural logarithms of the peer review costs follow a normal distribution
- Thus, the log-cost data meet the assumptions needed for successful control charting

NORTHROP GRUMMAN

AGS&BMS-PR-05-104

Math Details

- Consider a stochastic process . . ., X₋₂, X₋₁, X₀, X₁, X₂, . . . that represents an asset price recorded over time, like a daily sequence of prices for shares of a stock or other commodity
- We assume at time *t* that the realization x_t of X_t is known, but the realization x_{t+1} of X_{t+1} is unknown
- The single-period log-return, In(X_{t+1}/X_t), is random and assumed to be normally distributed, at the given time t
- Under these assumptions, X_{t+1}/X_t is a lognormally distributed random variable, and therefore, so is X_{t+1}

Math Details extracted from: http://www.riskglossary.com/articles/lognormal_distribution.htm

Salient Properties of the Model

- When log-returns are normally distributed, the corresponding prices are lognormally distributed
 - This model "is one of the most ubiquitous models in finance"
- The distribution of log-returns and share prices have been validated empirically by many market studies accessible on the web
- For short time periods in a stable market, the mean return is 0

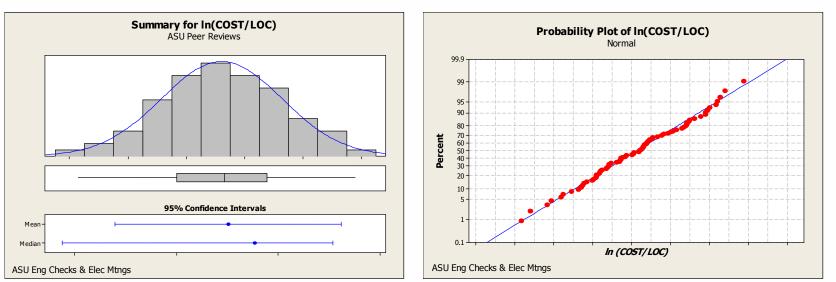
Quotation from: http://www.riskglossary.com/articles/lognormal_distribution.htm

Lognormal Density Function

$$f(x) = \begin{cases} \exp\left(-\frac{1}{2}\left(\frac{\ln(x) - \mu}{\sigma}\right)^2\right) \\ \frac{x\sigma\sqrt{2\pi}}{0} & x > 0 \\ 0 & x \le 0 \end{cases}$$

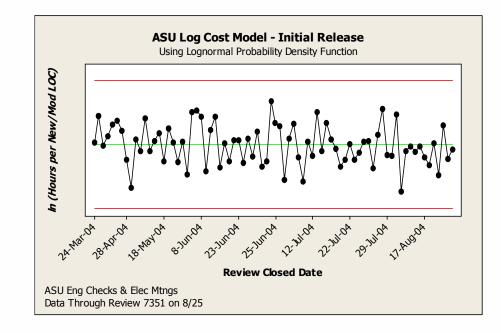
 $X \sim \Lambda[\mu, \sigma^2]$ $Y = \ln(X) \sim N[\mu, \sigma^2]$

 $E(X) = \exp(\mu + \sigma^2/2)$


$$Var(X) = (\exp(\sigma^2) - 1) \exp(2\mu + \sigma^2)$$

Math details can be found in any standard mathematical statistics reference, see for example, <u>http://en.wikipedia.org/wiki/Lognormal_distribution</u>.

Our Data on Logs



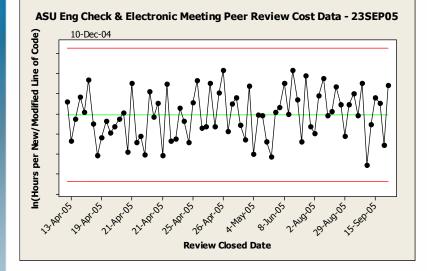
Andersen-Darling Test p < 0.759

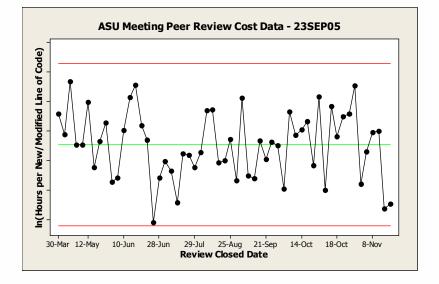
A Textbook Demonstration

The Transformed Control Chart

Impacts

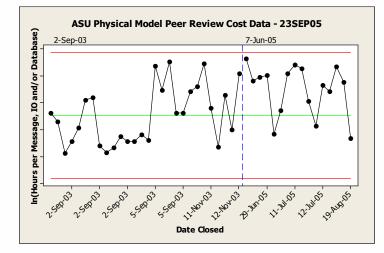
- False Alarms Minimized
- Meaningful Lower Control Limit
- Geometric Mean Preserves the Budget
 - OK, You Still Have to Find the Antilog

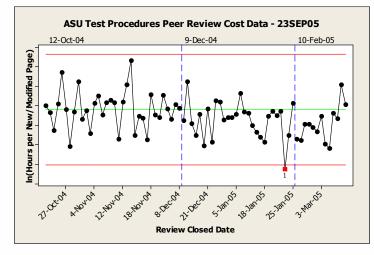

An In-control, Stable Process

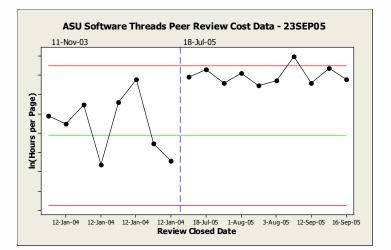


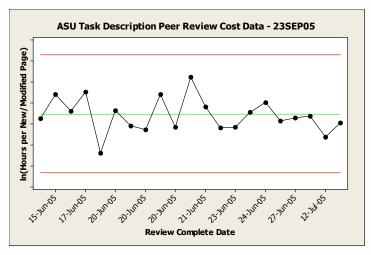
One Year Later . . .

Independent Lead Appraisers Cited Innovation and Novelty of Log-cost Model in Level 4 (10/2004) and Level 5 (4/2005) Appraisals








Expanding the Capability

Test, SW Design

Summary

With the Log-cost Model

- Peer Review Subprocesses Are In-control and Capable of Meeting Baseline Budget Allocations
- Due Diligence Is Rewarded
- Superficial Reviews Are Detected
- False Alarm Rate Reduced
 - Greater Than 40 × Improvement

Enhanced Sub-Process Control for CMMI Levels 4 and 5

QUESTIONS

Richard L. W. Welch, PhD

Northrop Grumman Corporation (321) 951-5072 rick.welch@ngc.com

