TBX EVALUATION TESTING IN THE M151 WARHEAD AS RISK REDUCTION FOR THE APKWS

Aviation Rockets and Missiles

Technology

2005 NDIA Missiles & Rockets SymposiumJason Gilliam28 April 2005

Proposed APKWS "Block II" Objectives

UNCLASSIFIED

Integrate Technologies to Replace the Current M151 and M423

- Insensitive Munition Compliance Is Main Focus
- Improved Warhead and Fuze Lethality
- Improved MIL-STD 1316 Fuze
- Program Ends in FY05 with TRL 6 Prototype Designs and Supporting Test Data
- Low Risk Transition to APKWS Block II SDD

05-0025 NDIA. Slide 3

UNCLASSIFIED

APKWS Warhead / Fuze Program Overview

- Design for IM
- Enhanced Fragmentation
- Enhanced Blast
- Dual Safe Fuze

Next Step:

APKWS Block II Warhead and Fuze Program Will Provide the Capability to Defeat the Current and Evolving Threat

AMMPGM STO-Funded Warhead Risk Reduction Activities

UNCLASSIFIED

Image: ConstructionTo Investigate High-Risk Areas and CriticalObjective:Technologies of 2.75" Warhead Developmentas a Parallel Effort to APKWS

Fragmentation Tests

- M151 Modified With Preformed Tungsten Cubes
- Embedded Fragmentation Warhead

Water Tank Tests

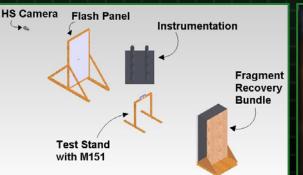
- Complete Fragment Mass Distribution Data
- Easier Data Reduction

Tandem Blast Frag / SC

- Shaped Charge and Blast Fragmentation Tandem Warhead
- Various Configurations

TBX / Enhanced Blast Tests

- Evaluation of Several TBX Fills From Industry
- Pressure, Temperature, and Fragmentation Data
- M151 Warhead Bodies


Thermobarics (TBX) / Enhanced Blast Tests

UNCLASSIFIED

Objective:

Conduct an Evaluation of Candidate TBX Fills from Industry and Other Gov't Agencies for APKWS Warhead

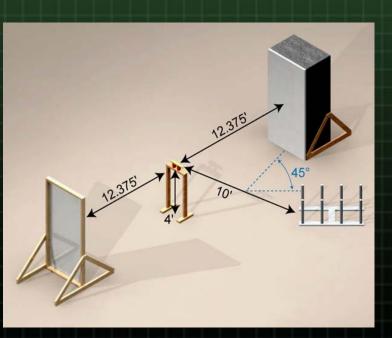
- "Mini" Arena Test Setup
 - One Velocity Panel, One Celetex Bundle
- Evaluation of 14 Different Explosive Fills
- Data Acquisition:
 - Pressure & Temperature
 - Fragment Velocity
 - Fragment Mass and Spatial Distribution
 - Number of Fragments

UNCLASSIFIED

- Data Will Be Available to Industry
- Evaluate TBX Fragment Driving Capability
- Comp B, PBXN-109, and PBXN-110 Tested as Baselines

AMRDEC	Comp B
AMRDEC	PBXN-109
AMRDEC	PBXN-110
AMRDEC	RAX-16
Picatinny	PAX-28
Picatinny	PAX-3
EBA&D	YJ-05
ATK	NIX-G
ATK	TEPX-D
Talley	3 fills
Navy	CLAP 1
Navy	C133

05-0025 NDIA, Slide 5


M151 Enhanced Blast Test Matrix

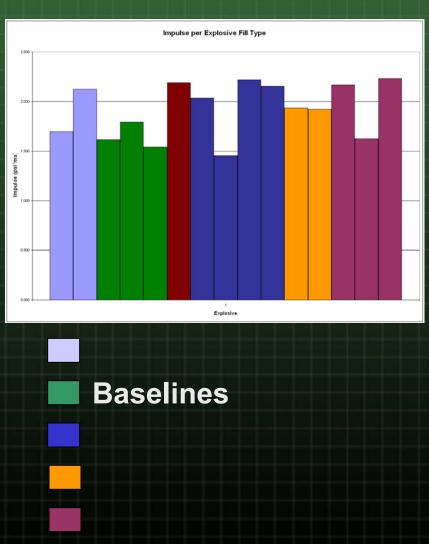
	Test #	Company/Organization	Explosive Fill	Test Date
	1	AMRDEC Baseline (Current M151 Fill)	Comp B	3/17/2004
2	2	AMRDEC Baseline	PBXN-109	4/6/2004
	3	AMRDEC Baseline	PBXN-110	6/2/2004
1	4	American Ordnance Iowa \ Picatinny	PAX-3	4/20/2004
	5	Alliant Techsystems \ Picatinny	NIX-G	4/19/2004
	6	Alliant Techsystems	TEPX-D	4/22/2004
	7	Talley Defense Systems	7164	5/11/2004
	8	Talley Defense Systems	7172	5/12/2004
	9	Talley Defense Systems	7174	5/27/2004
	10	NAVY (NAVAIR, China Lake)	CLAP	4/28/2004
	11	NAVY (NAVAIR, China Lake)	CL133	5/25/2004
	12	Ensign-Bickford Aerospace & Defense	YJ-05	4/7/2004
	13	ARDEC Picatinny	PAX-28	4/27/2004
	14	AMRDEC	RAX-16	4/5/2004

Mini-Arena Test Setup

- Standard M151 2.75" Warhead Body
 - Approx 6.4 lbs (empty)
 - Naturally Fragmenting Cast Iron
- Filled and Returned to Redstone for Testing
- Initiated with RP-80 & Booster at Front
- Comp-B tested as Baseline

- "Mini Arena" Setup
 - 1 Celetex Bundle
 - 1 Alum Velocity Panel
 - Phantom Video
- 4 Pressure Transducers
- 4 Calorimeters
- 4 Thermocouples
 - 45° from WHD Axis

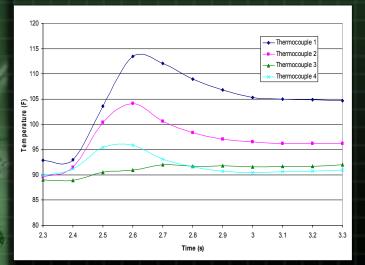
Peak Pressure Measurement


Explosive	Peak Pressure (psi) at 10 feet
Α	23.33
В	20.50
С	20.21
D	20.20
E	18.21
F	17.38
G	16.92
Н	15.86
Ι	14.87
PBXN-110	13.88
J	13.34
К	11.44
Comp B	9.91
PBXN-109	9.45

- Peak Pressure Recorded at Closest Pressure Transducer
- 10 Feet from Warhead
- Explosives 'named' A-L Based upon Peak Pressure Data Rank
- Same Nomenclature used for Remaining Comparisons
- Fielded M151 Explosive is Comp B

Pressure Impulse at 10 Feet

Explosive	Impulse at 10' (psi-ms)		
A	2.230		
В	2.219		
К	2.190		
D	2.168		
F	2.154		
С	2.125		
E	2.035		
J	1.930		
PBXN-109	1.793		
G	1.697		
н	1.627		
Comp B	1.617		
PBXN-110	1.540		
I	1.455		



05-0025 NDIA, Slide 10

Temperature Data

- Temperature Increase Recorded at Closest Sensor
- Pressure and Temperature Effects not on same Trend

Explosive	Temperature Increase at 10' (°F)
J	20.48
н	19.42
PBXN-109	17.82
Α	17.24
E	14.87
I	13.39
С	12.14
К	9.50
В	9.17
D	8.86
F	5.16
PBXN-110	Gage Malfunction
Comp B	Gage Malfunction
G	Gage Malfunction

Heat Flux (Calorimeter) Data

Heat Fluxes

Heat Flux at 10'

		(W/cm²-s)
	J	7.09
• Peak Heat Flux Recorded at 10 feet from Warhead	н	5.32
	E	4.66
	G	4.57
	D	3.49
	PBXN-109	3.10
	F	2.66
8	К	2.62
7	Α	2.35
(s, 5 units) (s, 1) (s, 2) (s,	В	2.07
	С	1.99
	I	1.86
	Comp B	Gage Malfunction
0 0.2 0.4 0.6 0.8 1 1.2 Time (s)	PBXN-110	Gage Malfunction

UNCLASSIFIED

05-0025 NDIA, Slide 12

Fragment Velocities

ì	Explosive	Average Fragment Velocity (m/s)	 Velocities Measured via
-	А	1580	Phantom High Speed Video
	В	1579	Min, Max, & Avg Velocities
	PBXN-110	1566	Calculated
	С	1542	The Best Performers in Pressure were Also the Best
	F	1502	at Driving Fragments
	Comp B	1449	
	К	1430	عنده وواحد وواحد والمواحد والمراجع
	PBXN-109	1372	Frag Velocity by Explosive
8	D	1365	
	Н	1346	
	G	1336	
3	J	1213	500 <u> </u>
C	E	1174	04 + + + + + + + + + + + + + + + + + + +
R		1109	Explosive Type
A.		UNCLAS	SIFIED

05-0025 NDIA, Slide 13

of Fragment Perforations

UNCLASSIFIED

E	cplosive	Number of Perforations	
	Α	564	
	В	523	
	PBXN-110	493	
	С	441	
	Comp B	396	an a
	н	378	
	F	368	
	G	347	
	К	333	
	J	326	
	D	324	
	PBXN-109	315	
	E	268	
	I	155	

05-0025 NDIA, Slide 14

Summary of TBX Evaluation Results

Explosive Fill Rankings	Peak Pressure	Pressure Impulse	Temperature Delta	Fragment Velocity	Fragment Perforations	Heat Flux	Cummalitive Score (Lower=Better)
А	1	1	4	1	1	9	17
В	2	2	9	2	2	10	27
С	3	6	7	4	4	11	35
н	8	11	2	10	6	2	39
F	6	5	11	5	7	7	41
D	4	4	10	9	11	5	43
J	11	8	1	12	10	1	43
E	5	7	5	13	13	3	46
G	7	10	7	11	8	4	47
PBXN-110	10	13	8	3	3	10	47
К	12	3	10	7	9	8	49
PBXN-109	14	9	3	8	12	6	52
COMP B	13	12	10	6	5	10	56
I	9	14	6	14	14	12	69

No Data, (Estimate)

- Each Measured Characteristic Given an even Weighting
- 80% of Candidate Explosive Fills Exceeded Baselines
- Ranking may be different depending on desired application
- This Testing Demonstrated that Many Enhanced Blast (i.e. TBX) Explosives Maintain Adequate Fragment Driving Characteristics