

Improvements to Airborne Ladar Man-in-the-Loop Operations

Sarah J. Hard, Joseph E. Grobmyer, Jr., Tommy Lum, Robert E. Morris, H. Lee Pratt U.S. Army RDECOM, AMRDEC Cliff Andressen Raytheon Missile Systems Redstone Arsenal, Alabama

28 April 2005

Outline

- Objectives
- Test Description
- Results

- Analysis
- Conclusions

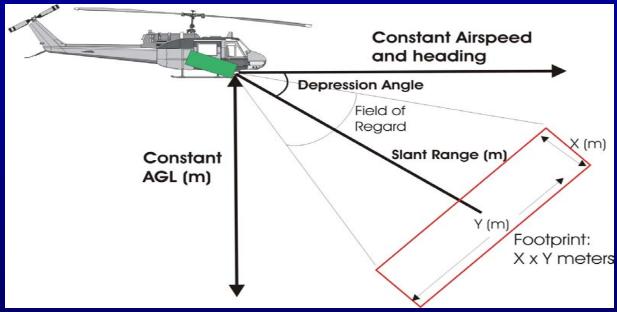
Ladar Visualization and Analysis (LAVA) Test

Objective:

- Collect Ladar imagery over UAV type scenarios
- Improve visualization processes and techniques employed by UAV sensor technology

Approach:

- Conduct captive flight test (CFT) utilizing the Lockheed STAR Ladar seeker
- Collect Ladar imagery over RSA and surrounding urban area


Payoff:

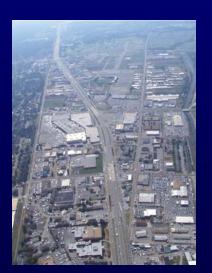
 Provide additional dataset to improve man-in-the loop operations and ATR development for UAV tactical environments.

Test Description

Waypoint Flight Path

	Flight Configuration #1	Flight Configuration #2
Speed	50 kts	50 kts
Altitude (AGL)	2121 feet	3182 feet
Sensor Depression Angle	45°	45°
Sensor Slant Range	1000m	1500m
Sensor Scan Footprint	59m x 436m	89m x 655m
Sensor FOR	25 deg	25 deg
Spot Size at Range	40cm	60cm

LADAR CFT Data Collection Areas



Building 5400, RSA

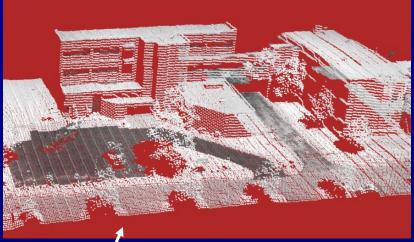
RMF, RSA

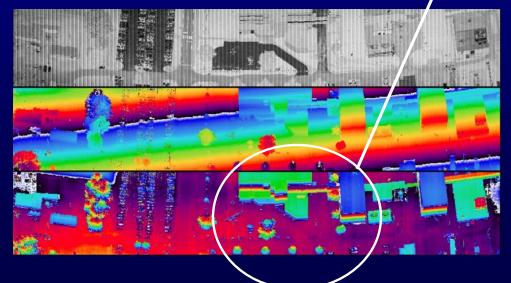
US Hwy 231, HSV

Whitesburg Bridge, HSV

Space/Rocket Ctr, HSV

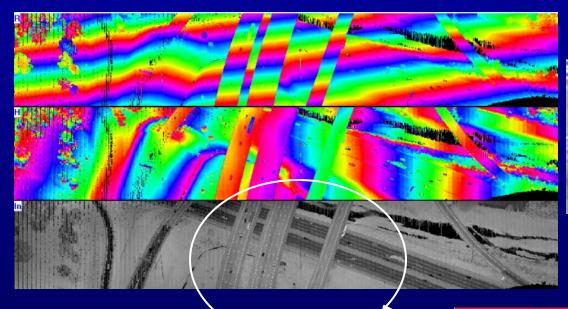
I-565, HSV


Data Results / Examples from CFT

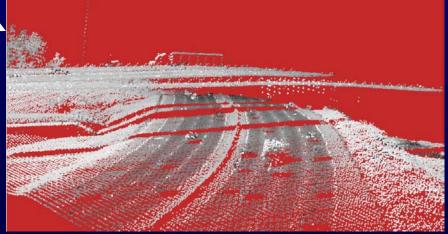


Building 5400, Redstone Arsenal, AL

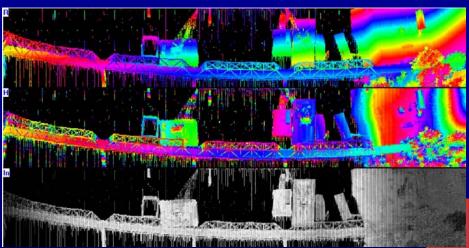
Intensity


Range

Height



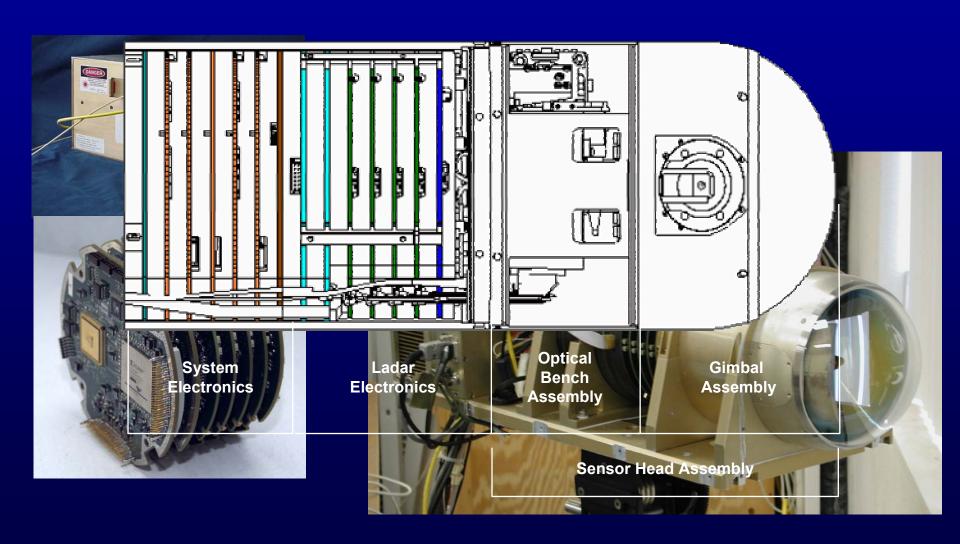
I-565 over Highway 231, Huntsville, AL



Whitesburg Bridge, Huntsville, AL

Reverse Angle

CLAS Test Summary


- Test designed for advanced LADAR ATR algorithm development
- Data successfully collected for all test scenarios
 - Targets imaged from less than 250 meters to over 4 Km
- 3 Days, ~20 scenarios, thousands of images
 - Moving, <u>confusers</u>, long range, <u>variable resolution</u>, stationary, clutter, camouflage, dismounts, <u>urban data</u>
- System was operational in < 2 hrs after arrival on site
 - No failures in 2 weeks of CY2004 testing and significant transport

Common LADAR Seeker (CLAS)

Russell Measurement Facility (RMF) Laboratory Tower

Total Tower Height: 329 feet

Top Laboratory Height (from ground to floor): 300 feet

Floor Dimensions: 34 x17 feet

Elevator Laboratory Floor Dim.: 10x6 ft. 30 floor stops

Data Results / Examples from Tower Test

Whitesburg Bridge

Range

Intensity

Target imaged during degraded weather conditions

RMF Compound Test Area

Data Collection at short range:

- < 250 meters
- Targets in occlusion or open

Range Image Intensity Image

Conclusions

Ladar Data in a World Context

Tactical Situational Awareness Enhanced
Data
Visualization

SNSR: 1043, TIME 10:47Local

LADAR Sensor Data can be displayed to the Warfighter in a Real World Visual Context

Proximity to Roads and Natural Features

Friendly Unit Designation

THE REAL PROPERTY AND ASSESSMENT OF THE PARTY OF THE PART

Readv

Questions?