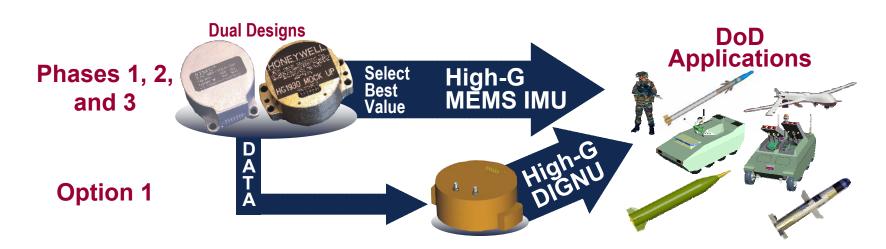


40th Annual Armament Systems: Guns - Ammunition - Rockets – Missiles Conference

MEMS IMU - Common Guidance

Dr. Vicki C. LeFevre


Mrs. Lynne K. Rider

Mr. David W. Panhorst

28 April 2005

Program/Business Strategy

- Go To Multiple IMU Design / Manufacturing Teams
 - L3/IEC
 - Honeywell/Draper/Rockwell Collins
- Build to Common Requirement
- Leverage Process Improvements into Multiple DoD Applications
- Teams Incorporate Common IMU into Common, Deeply Integrated (GPS/IMU/AJ) Guidance & Navigation Unit (DI-GNU) Built to Common Specification

Technology Investment Areas

<u>S & T</u>

PERFORMANCE DRIVERS

- •Size
- •Weight
- Performance
- Power
- Environment
- •Reliability

PERFORMANCE IMPROVERS

- Technology Development
 - Design
 - Test
 - Evaluate
- •Improve Design
- •Improve Technology
- •Do It Again

ManTech

COST DRIVERS

- Touch Time
- •New Capital Equipment
- •New Process Development
- •New Product Development
- •Low Volume Production

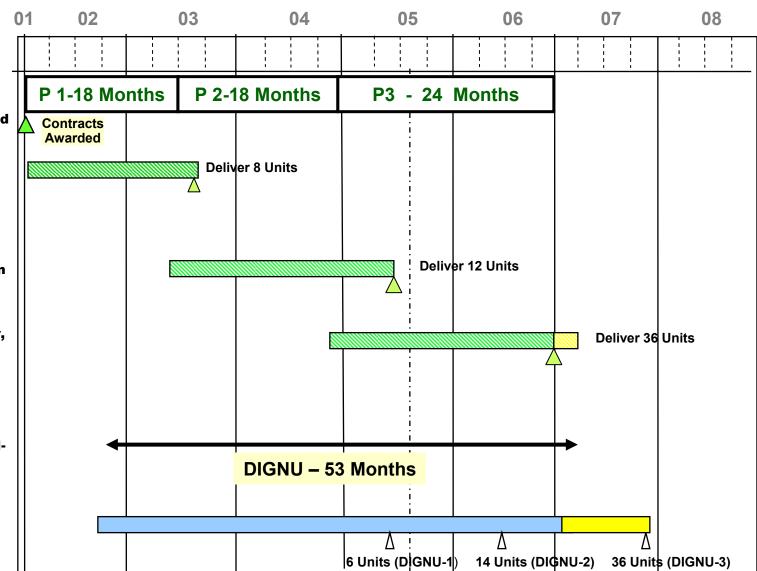
COST REDUCERS

- Automation
 - Improved Consistency
 - Reduce Touch Time
- •Upgrade Equipment
 - -Better Control
 - -Improved Yield
- •Consolidate
- •Economy of Scale

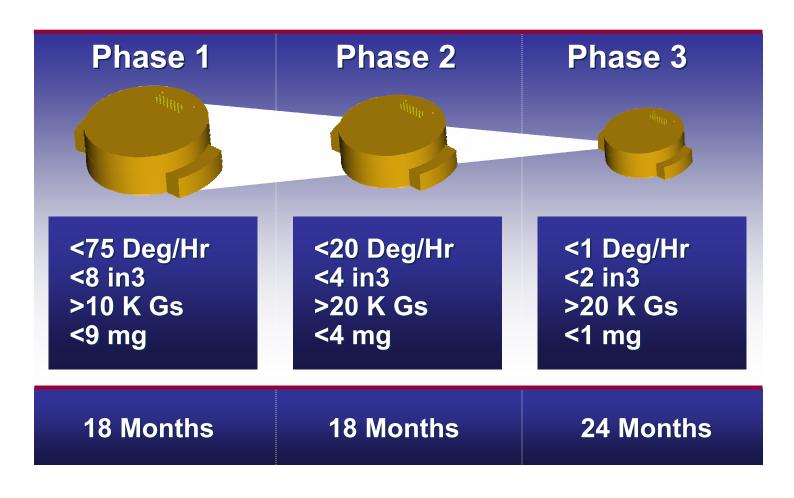
Using Manufacturing Technology to achieve Technical Performance Goals

Program Milestones

System Process/
Definition and Sensor and
Electronic Design
Development; JCG ICD
IMU Demo 10K G,
< 75 °/hr,< 9 mg, < 8 cu.
in.

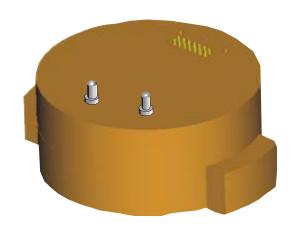

Phase 2 (2 KTRs Min)

IMU Demo > 20,000g, < 20°/hr, < 4mg, < 4 cu in over Environment,


Phase 3 (2 KTRs Min)

IMU Demo > 20K G, 1°/hr, < 1 mg < 2 cu. in. over Environment, < \$1,200/IMU

Option 1 (2 KTRs Min) DI-GPS/ ISA-IMU / AJ, 4 cu. in., Intg Demo(s), > 20K G, < 1 °/hr over High-G Enviro < \$1500


High-G MEMS IMU Evolution

Incrementally Shrink Volume and Power While Improving Performance

Deeply Integrated Guidance and Navigation Unit (DIGNU)

- Traditional GPS/INS Integration Enhances A/J Loss of Lock Capability
- Deep Integration Concept Provides 15-20 db A/J Over Conventional Tightly Coupled Solutions (SW Solution Only)

- Improves Weapon Effectiveness by Decreasing CEP
- Common Interface Control Document (ICD)
- Single Processor Architecture
- Higher Reliability

Knowing Where You Are And Where You Need To Be

Program Output

Provide Common MEMS IMU/DIGNU for 90% of all DoD Applications

- Common Interface Control Document for compatibility across multitude of platforms
- Common Performance Specification for consistent output signals
- Two qualified suppliers producing interchangeable devices

Implementation of System Engineering principles ensure that customer needs are met!

Quality Function Deployment(QFD)

- Two deployments to date
 - 1. focus on specific technical characteristics
 - provided valuable specification input
 - answered questions on interfaces, environments, and sensor performance
 - 2. focus on understanding the customer base and their top level requirements
 - resulted in a prioritized list of customers based on:
 - compatibility of production schedules
 - anticipated production volumes
 - allows evaluation of current requirements/cost drivers
 - provides basis for programmatic decisions
- Use of this SE tool resulted in comprehensive understanding of end-user needs

QFD - 1 Example of Results

Requirement	Original Spec	Range of Answers	
Per unit cost	<\$1200	\$1650 to <\$1900	
Volume	<2 cubic in.	4 cubic in.	
Dynamic G-range	30 g	70-100 g	
Built in test	Coverage of 80% of testable failures	Max Power up BIT of 95%	
Max input power	<u><</u> 5₩	5.25W	

Customer QFD Results (by Phase)

Customer	Prod.Yr	IMU vol	Performance
MRM	2009	Phase 2	Phase 2
ERM	2006	Phase 2	Phase 2
PGMM	2008	Phase 2	Phase 2
Excalibur	2005	Phase 2	Phase 2
AGS-LRLAP	2008	Phase 2	Phase 2
SDB	2008	Phase 2	Phase 3
APKWS	2006	Phase 2	Phase 3
JCM	2008	Phase 2	Phase 3
GMLRS	2005	Phase 2	Phase 3
JSOW	2009	Phase 2	Phase 3
JDAM	2008	Phase 2	Phase 3
THAAD	2007	Phase 2	Phase 3
WCMD	2007	Phase 2	Phase 3
Soldier Navigation	2006	Phase 3	Phase 3

Next Steps

- End User feedback on ICD and Performance Specification
 - Contact Information to receive a copy of documents

```
Tobey Coombe
John J. McMullen Associates Inc.
Engineer
(202)-741-2041
TCoombe@JJMA.com
```

- Requirements data being tracked with SLATE software
- ICD and specs in Configuration Management Control

Summary

- Program structured to meet 90% of end user needs
- Progressing toward meeting both technical and programmatic Phase 3 goals by 1QFY07
- System Engineering has added discipline to the approach