

Design for Manufacturing & Assembly (DFMA)

Steve Watts

Production Engineering Division Engineering Directorate Aviation & Missile Research, Development, & Engineering Center Research, Development, & Engineering Command Redstone Arsenal, AL

28 Apr 05

Introduction

- In state-of-the-art weapon system development, emphasis is largely placed on designing to meet technical performance
- However, the manufacturing processes and cost associated with the design must also be addressed for overall program success
- Limited resources within DoD make designing for cost effectiveness
 even more imperative
- Numerous studies show that the most effective time to implement cost saving changes is early in the product design cycle
- Widely accepted commercial Systems Engineering standards consider "Manufacturing Processes" as one of the basic building blocks of a system
- The "Brick Wall" syndrome still exists today

DFMA Workshops are an excellent tool to break down the "Brick Wall"

- DFMA is a proactive and concurrent design process that allows for early consideration of manufacturing aspects
- The purpose is to generate an environment where a cross-functional team works together to optimize the design for cost effective manufacturing

Benefits

<u>Tangible</u>

- Shortened Development Time
- Reduced Development Costs
- Enhances a smooth transition to production
- Reduced parts count
- Simplified assembly processes
- Improved Quality (fewer opportunities for mistakes)
- Reduced manufacturing costs (thereby reducing AUPC and Life Cycle costs)

Intangible

- Improved communication within entire design team
- Promotes teamwork
- Increases Organizational ownership

DFMA Principles

- 1. Minimize the number of parts
- 2. Minimize the number of fasteners
- 3. Standardize
- 4. Avoid difficult components
- 5. Use modular subassemblies
- 6. Use multifunctional parts
- 7. Minimize reorientation
- 8. Use self-locating features
- 9. Avoid special tooling/test equipment
- 10. Provide accessibility
- 11. Minimize operations & process steps

Reduce, Eliminate, Combine, Minimize, Standardize, Productionize ...

When to Implement

- Could conceivably conduct workshops during Concept phase
 - Focus on broad, wholesale design changes
 - Opportunity to consider manufacturing impacts of one technology vs. another
 - Be careful not to fine tune this design (could become obsolete)
- Most effective time is during Development Phase (prior to PDR)
 - Coincides with the time period where trade study activity is most active
 - Engineering testing will occur after PDR, which will prove-out changes
 - Technology has been selected, but design is flexible
 - Time remains in development schedule to incorporate significant cost saving changes
- Workshops during Development Phase after the PDR, but prior to the CDR
 - Design is becoming more fixed, but opportunities for cost savings still exist
 - Focus on fine tuning aspects of the design that successfully completed the PDR
 - Be careful not to implement major changes (no time to incorporate)

Key Points / Lessons Learned

- Must have multi-functional team
 - Concurrent Engineering
 - Include disciplines such as systems engineering, design, manufacturing, quality, test, etc (even manufacturing floor personnel)
- Use an independent facilitator
 - No ownership in design and can keep flow of workshop moving
- Conduct multiple workshops
 - break system down into manageable pieces
- Prep work
 - Overview description of hardware
 - Preliminary manufacturing assembly flows
 - Have some type of cost baseline to perform trade studies
- Utilize Brainstorming techniques
 - Facilitize free flow of ideas (check rank at the door)
 - Don't be resistant to changes
 - Don't get bogged down by trying to solve the details
- Follow-up on ideas after workshop has ended

DFMA Workshop Procedure

During the Workshop

(Normally scheduled for 1-2 days)

- Training
 - Educate team on workshop procedures and DFMA principles
 - Get people thinking in terms of producibility
- Baseline the current design
 - Team needs to understand where we are
 - Provide an overview description of hardware & assembly procedures
- Brainstorming Session
 - This is where the true benefit of the DFMA workshop is realized
 - Utilize Brainstorming techniques
- Categorize Ideas
 - What is risk to implement (technical & manufacturing)
 - Cost savings potential (Rough estimate large, small, or insignificant)
 - Is there a cost to implement (development dollars, tooling, test equipment, etc)

DFMA Workshop Procedure

(Continued)

After the Workshop

- Detailed assessments and Implementation
 - Cull out brainstorming ideas that are too difficult, risky, or costly to implement
 - Focus on ideas that can truly benefit program
 - Incorporate results into Systems Engineering process
 - Perform detailed evaluations and/or trade studies
 - Identify candidates that can be implemented in current program
 - Identify candidates that can be implemented in other vehicles (Mantech, IRAD, Technology Insertion, etc)

Quantify results

- Document ideas that are carried forward
- Document specific improvements
- Identify cost savings (may be difficult in early development phases)

Examples

Program	Contractor	<u>Results</u>
Longbow (Transceiver CRP)	Lockheed Martin / BAE - Nashua	 Number of operations reduced 20% Assembly hrs/unit reduced 20% Floor space reduced 20% Increased production from 52 to 220 units/mo
Longbow (Counteractive Protection System)	Remec / BDI	 Re-layout of electronics for accessibility Number of chips & carriers reduced Implemented auto assembly procedures Combined parts
APKWS (Guidance Section)	BAE - Nashua / BDI	 Eliminated inaccessible areas Color coded parts (assembly aide) Injection moldings vs. machined parts Eliminated fasteners and screws Combined parts Implemented self-alignment features
NLOS-LS (Seeker)	Raytheon - Tucson	 Generated 63 separate candidates Reduction of alignment steps Semi auto alignment procedures Yield improvements for subcomponents Candidates still being evaluated

Summary

- Successful implementation of DFMA principles results in reduced costs
- DFMA workshops serve as a practical tool to incorporate Concurrent Engineering procedures
- DFMA is a proven design methodology that works for Government and Commercial Industry

The AMRDEC Production Engineering Division's objective is to incorporate DFMA workshop requirements in all Development Program Scopes of Work

References

- GAO-02-701 Best Practices, Jul 02, "Capturing Design and Manufacturing Knowledge Early Improves Acquisition Outcomes"
- Article: Defense AT&L Magazine, Nov-Dec 04 Edition, "Using DFMA to Meet APKWS Cost Goals", http://www.dau.mil/pubs/damtoc.asp
- Raytheon Missile Systems Tucson, AZ
 - Mr. Tom Quinn, Systems Product Development Engineer, Engineering Directorate, Thomas_R_Quinn@raytheon.com
- BAE Systems Nashua, NH
 - Mr. Joe Tiano, Technical Operations Manager, Joseph.J.Tiano@baesystems.com
- Boothroyd Dewhurst, Inc.
 - Mr. Nick Dewhurst, Executive Vice President, ndewhurst@dfma.com
- U.S. Army
 - Mr. Steve Watts, Team Leader Tactical Weapons Group, Production Engineering Division, Steve.Watts@amrdec.army.mil