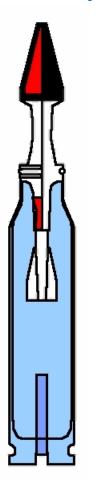


CTA International


- CTAI is a joint venture company 50/50 BAE Systems and Giat Industries.
- Dedicated team, 40 strong, British and French engineers and scientists based in Bourges, France.
- Whole company focused on development of 40mm Cased Telescoped Weapon System.
- Technology Background funded from industrial investment.

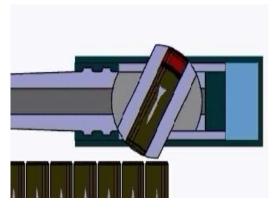
Private Venture Investment since 1994 - >€52M

Cased Telescoped Technology

Principle of Technology 'Telescoped' ammunition

30% saving in volume for the same performance

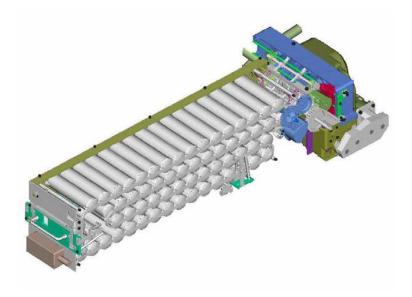
30% more performance for the same volume



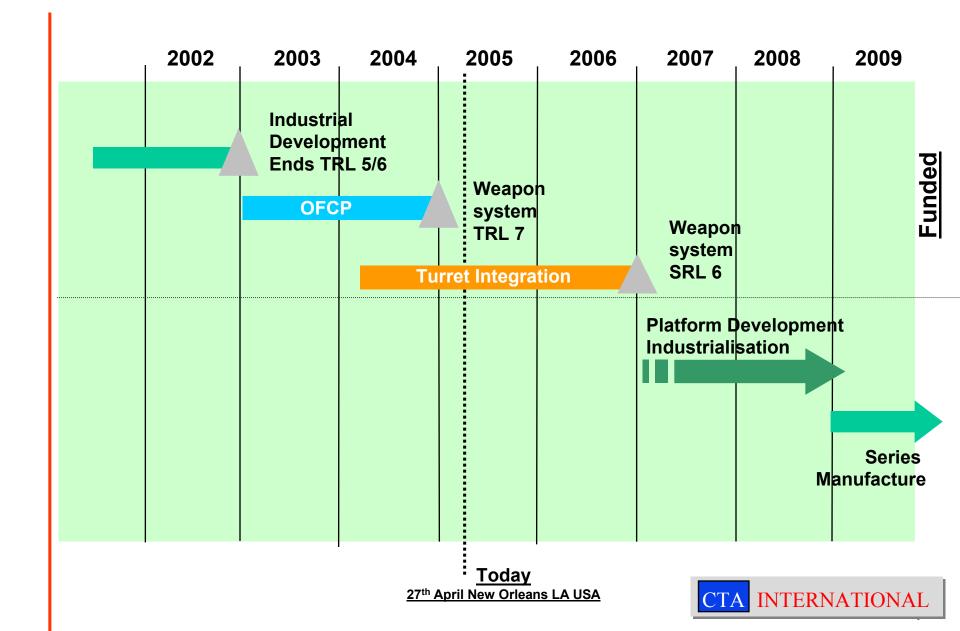
Cased Telescoped Technology

Cylindrical cartridges enable a much simpler Cannon mechanism As a consequence the overall cannon system is substantially smaller

Rotating chamber and 'push through' concept



Linkless Ammunition Feed Technology


- Compact
- Reduced gunner workload
 - > Easy loading and unloading
 - > Remote operation

CTWS Route Map

The Objective Future Cannon Programme(OFCP)

- Started in September 2002; joint funded by UK MoD, French DGA and CTAI
- Preceded by a system lethality system trade study which selected 40mm CTWS as the optimal cannon system to satisfy the future lethality requirements of UK and France.
- In 2002 UK and French Governments co operate on 40mm CTWS
- Driven by the Requirements of:
 - UK Warrior, FRES
 - DGA VBCI, EBRC
- Objective was to demonstrate TRL7 by both governments is a major milestone in CTAI's programme. The joint contracts will enable us to the end of 2004 total - budget 9M€
- Customers are committited to share deliverables with other nations

France and the UK sign deal for 40mm CTWS

an agreement with CTA International (CTAI) to fund a risk-reduction programme for the 40mm Case Telescoped Weapon System

The objective is to ensure that the design is technically secure when the two armies need to select the armament for new platforms or mid-

According to David Leslie, CTAI managir director: "This demonstration of support from work closely with the procurement agencies and user groups from both countries in an environment of shared information.

40mm CTWS for the projected Warrior infantry discarding sabot and a general-purpose round 40mm CTWS was recently installed in the turret fighting vehicle (IFV) upgrade and for at least one of the air-bursting munition type. member of the projected Future Rapid Effects System, for which the user requirements docu-

The French Army is expected to specify the Level (TRL-7) by December 2004. weapon for the projected Engin Blindé à Roues de Contact, which is currently at the study phase. Versions of this could include a 6 x 6 model with Programme to determine which medium-calibre the two companies have provided all developa 40mm CTWS installed in a remote-controlled | weapon would be appropriate for new vehicle | ment funding to date as a private venture. turret (Jane's Defence Weekly 10 April).

The CTAI work will include not only the forms. According to CTAI, the findings of this

tem and the two warshot natures of French government.

Under the terms of the contract, CTAI, work- is also installed in both examples of the SIKA and ing with France and the UK, will bring all Lancer testbeds developed to meet the now canelements of the system to a Technical Readiness | celled operational requirements of the UK and

The UK Ministry of Defence has recently | Giat Industries of France and BAE Systems completed its Objective Future Cannon RO Defence of the UK jointly own CTAL, and platforms as well as upgrades of existing plat-

ammunition: armour-piercing fin-stabilised | For trials and demonstration purposes the of the Alvis Vehicles Warrior (JDW 9 March). It US armies.

Christopher F Foss

TRL 7 Definition 'System technology prototype demo in an operational environment'

Ammunition Feed System

'The System'

Ammunition: APFSDS, GPR-PD, TP-T

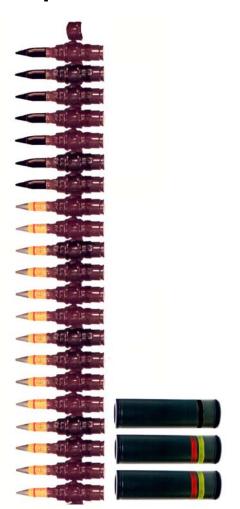
'The Environment'

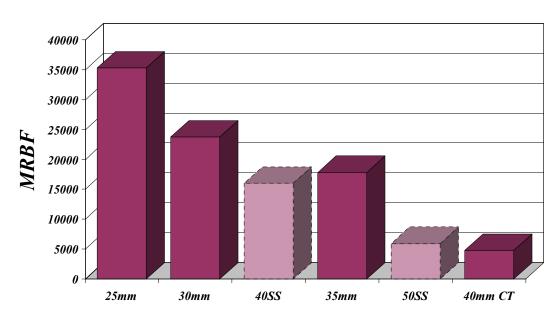
'OFCP' Approach – UK MoD / French DGA / CTAI

- Define Requirement
 - > Performance
 - > Use i.e. the 48hr Battlefield Mission
 - > Maintenance and Support
- Define a set of assessment criteria
 - > Safety
 - > Environmental robustness
 - > Reliability
 - > Performance
- Develop test and assessment programme to deliver objective evidence
- Execute the programme

Weapon System - Performance

Requirements


- Rate of Fire 200 Shots per minute
- Fire two ammunition types selectable <3s
- Remote operation
- Low integration volume <80 litres total swept volume
- Dispersion
 - > <0,35 mil APFSDS
 - > <1 mil GPR
- Minimum Fatigue Safety Life 10,000 rounds
- Operates in safety –46°C to +63°C
- Satisfies prevailing UK MoD and French DGA safety standards
- Reliability >98%
- Supports 'coincidence' fire control solution


Before We Talk about Reliability!

Equivalent Stowed Kills

More 'capable' systems need to complete less cycles to complete the mission.....
therefore their MRBF requirements are less.

Required MRBF for 98% Reliability Equivalent Stowed Kills

Achieving MRBF costs time, money and adds system level risk!

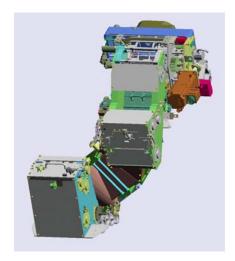
OFCP - Reliability Test Programme

Weapon Safety

- Fatigue Safety Testing
- 30,000 cycles completed on all safety critical components
 - > Barrel
 - > Breech Ring
 - > Recoil system
 - > Chamber
- 3x samples of each component tested in series to destruction
- Cumulative total of 360,000 test cycles completed
- Simulation techniques developed with UK MoD DOSG

Dynamic Pressure Test Rig

Chamber failed in fatigue



Recoil System
Ring stack
Failed in
Fatigue

Impulse Simulator

Feed System

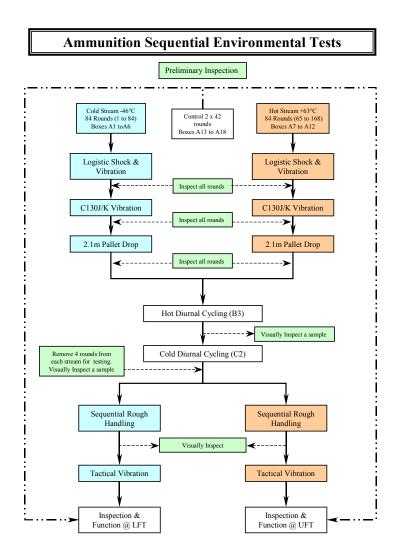
- Warrior Feed System
 - > Designed
 - > Built
 - > Integrated
 - > Tested
 - > Sept 2002 and Dec 2004.
- Full dynamic vibration test programme completed on full mission load.

CAD Image of OFCP Feed System

Feed System on Vibration Table
November 2004

Ammunition TRL Assessment Objectives and Approach

- TRL 7
 - > APFSDS
 - > TP-T
 - > GPR (PD)


APFSDS and TP-T sectioned ammunition

- Freezing of Build Standard
 - > For GPR the development of a Point Detonating fuze
- Production of test Quantities
 - > Nominally 900 rounds of each
- Completion of a sequential environmental test programme
- Completion of IM assessment
- Performance assessment

Environmental Test Programme Completed

- UK MoD DOSG test Programme based OB Proc 43060
- Sequential Environmental Test
 - > Hot Cold Streams -46°C & +63°C
 - > Logistic Shock and Vibration
 - > C130 transport
 - > 2.1m Pallet Drop
 - > Hot Diurnal Cycling
 - > Cold Diurnal Cycling
 - > Sequential Rough Handling
 - > Tactical Vibration
 - > Inspection
 - > Test Firing
- Propelling Charge Evaluation
- Noise / Muzzle Blast
- Projectile Strength of Design
- 12m Drop Test

Ammunition Post Sequential Testing - Looks Ugly

 As always testing was not without some minor problems, but all environmental tests were completed and the firing programme concluded; 100%

Some Deterioration of Packaging

Minor Surface corrosion

.....but still Shots Great!

GPR PD Firing Oct 2004 From Warrior IFV Turret

Effective Breaching Brick Walls

Defeat of Armoured Concrete with Behind Armour Effects

Insensitive Munition (IM) Testing

- Tested to Requirements of STANAG 4439
- Only APFSDS tested to date
- Tests completed
 - > Fuel Fire
 - > Slow heating
 - > Bullet Attack
 - > Sympathetic Reaction
 - > Shaped charge

Before

After

Sympathetic Packaged

Sympathetic in Feed system Module

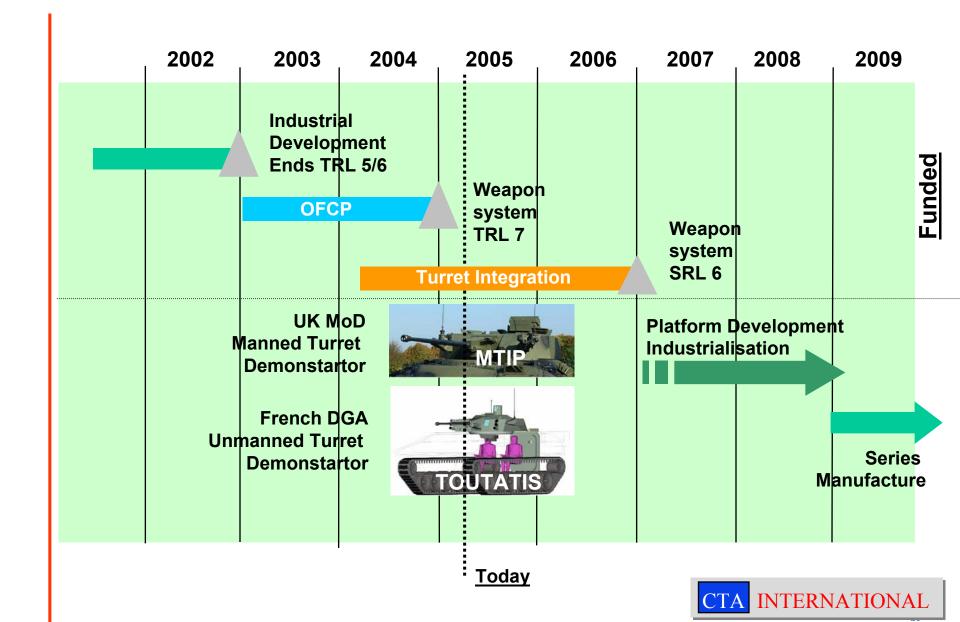
Fuel Fire; Type IV reaction

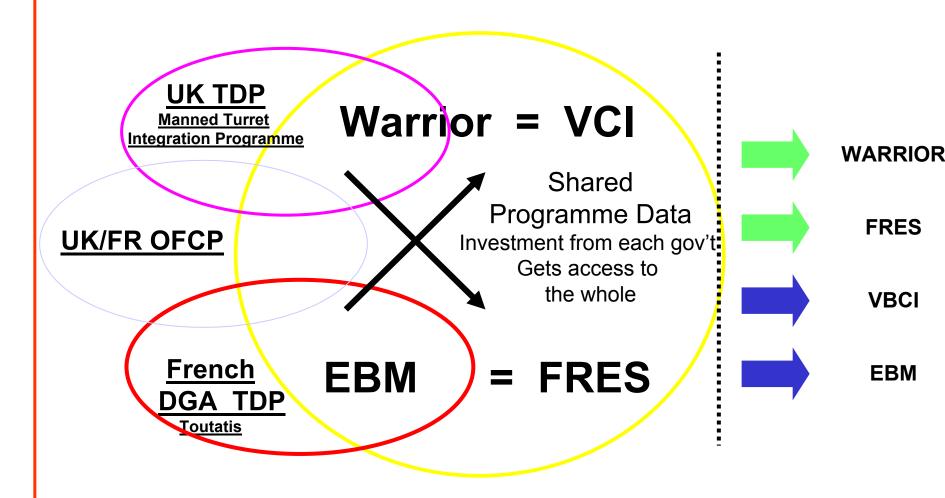
Airburst TRL 5 Demonstration

- Completed over 200m (closed tunnel firing)
 - Safe and Arm function confirmed
 - Point Detonating Function Confirmed
 - > Airburst function confirmed
 - Last multiple round trial 100% functional

Arena Trials

Turret Integration - OFCP assessment


- BAE Systems PV investment provided opportunity to design and build a turret which was used as part of OFCP maturity assessment
- Principal objectives
- Demonstrate physical integration of weapon
- Demonstrate management of CTWS out of balance
- Demonstrate 'User' functionality of Weapon System with confines of turret.
 - > Loading
 - > Unloading
 - > Firing


40mm CTWS Weapon Stabilisation

CTWS Route Map

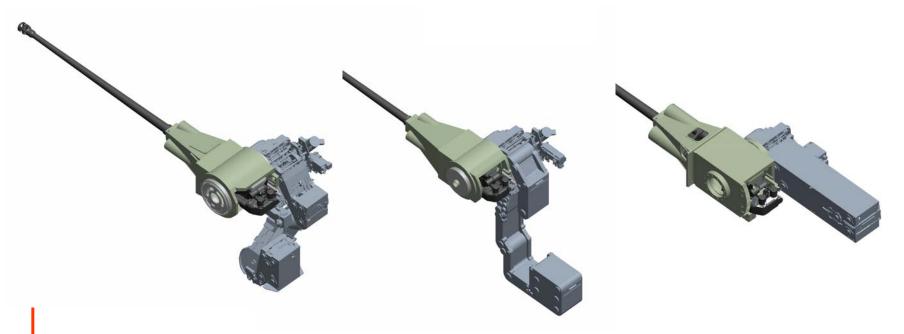
UK and French Government Collaboration

Prototyping and Demonstrator Phase

EMD & PROD'N

CTAI Turret Demonstrator Programmes

MTIP
4 Tonne Conventional Manned Turret

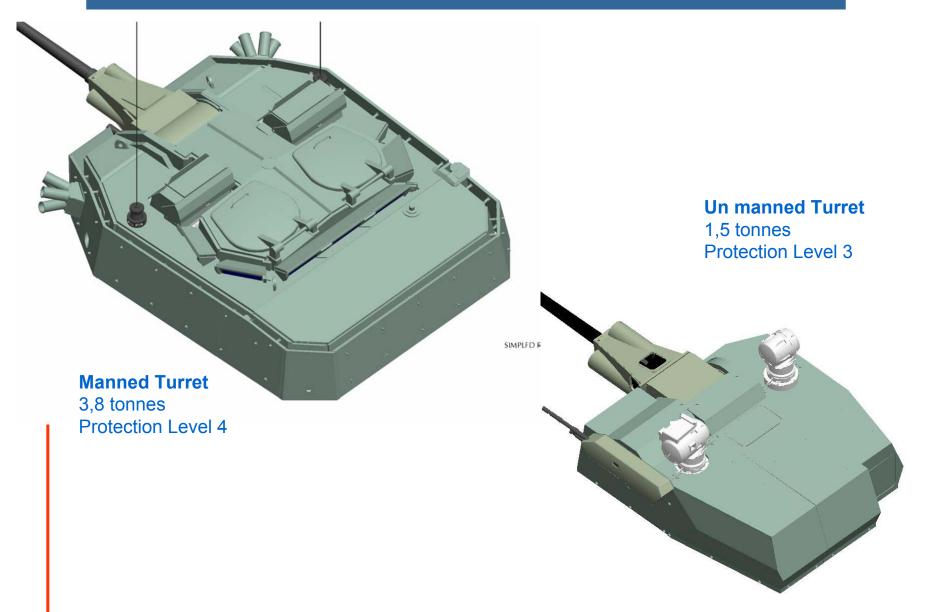

Toutatis 1,5 Tonne Unmanned Turret

Manned vs Unmanned Mechanical Integration Considerations

40mm CTWS Feed system Modularity

MTIP
42 Rounds
2 Natures

VBCI 70 Rounds 2 Natures



Toutatis
68 Rounds
3 Natures

Manned vs Unmanned

Manned vs Unmanned

Electronic Architecture Considerations

Electronic Architecture Functionality against KUR

KURs (defined by Capability demands)

FIREPOWER

SURVIVABILITY

MOBILITY

CAPACITY

C 3

STA

SUSTAINABILITY

Exploit the Data Management System

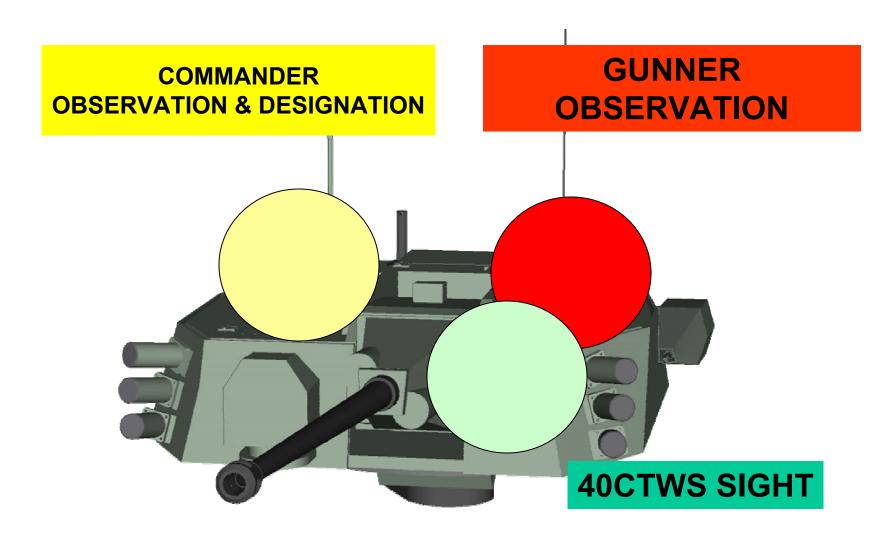
Inform the Crew Members

Operate the Radio Comms

Command the movements of the Vehicle

Use the Observation System

Exploit the Auto-Surveillance Suit


Exploit the IFF system

Operate the Fire Function

Operate the Defense Aids Suit

TOUTATIS SIGHTING SYSTEM: PRODUCT VIEW

Gunner's Crew station

Unmanned

French Army Leclerc Gunner Operating Toutatis MMI prototype; Bourges March 2005

Manned

Unmanned solution ultimately demands confidence in Indirect Situational Awareness with a consequential impact on the EA.

Fire Function EA Drivers

Data Network (MILCAN)

Bandwidth and rate

Determinism

Video Network

Sensors

HD Display / Virtual reality

Video mixing

Power Network

Low/High

EMC

Autonomy

Protection

Safety Network

Technology

Redundancy

'Translating Lessons Learned into Systems Requirements'

Conclusions

- Highest lethality at lowest system integration burden
- Overmatch provides best insurance against Asymmetric Target Sets for the next 30 years
 - > APFSDS old generation vehicles
 - > GPR Airburst suppression
- CTWS as a weapon system technology is at TRL 7
- 2006 will see Turret Demonstrators (Manned and Unmanned) at SRL 6

CTWS an 'Enabling Technology' for all future medium calibre lethality requirements

