Development, evaluation and lifetime prediction of medium and large caliber ammunition

Gert Scholtes, 40th GARM, April 25-28, 2005

Development, evaluation and lifetime prediction of medium and large calibre ammunition

ammunition

Development, evaluation and lifetime prediction of medium and large calibre ammunition

3

Propellant: Capabilities

- Modeling & simulation
 - Thermodynamics
 - Processing
 - Internal ballistics
- Lab-scale production
 - Up to ~ 1 kg (analyses)
- 'Small scale' production
 - Up to ~ 300 kg
- Performance testing
 - Closed & vented bombs
 - Test guns
 - Thermal, IM & safety properties

Propellant: Modeling & simulation

- Thermodynamics igodol
 - NASA-Lewis, Blake, ICT-code
- Internal ballistics
 - TIBALCO (TNO Internal BALlistic Code)
- Processing igodol
 - Rheology
 - Extrusion & shaping processes

PIP(max) [-]

Propellant: Processing

Development, evaluation and lifetime prediction of medium and large calibre ammunition

5

Propellant: **Test facilities**

- **Closed Vessels**
 - 43.5 cc / 130 cc LPCV (20 MPa)
 - 25 700 cc CV (150 500 MPa)
 - 400 cc HPCV (1000 MPa)
- **Erosivity & burning interruption tests**
 - 130 cc 20 MPa
 - 500 cc 150 MPa
- Plasma ignition
- Instrumented guns
 - .50 gun
 - 29-mm / 50-mm / 78-mm accelerator

catch tank Gert Scholtes, 40th GARM, April 2005

CV's

(25 - 700cc)

Vented HPCV and

Propellant: Examples of R&D projects

- Propelling charge development •
- Temperature independent propellant
- **Barrel** erosion
- Ageing & lifetime assessment \bullet

Proven temperature independency

7

Stick propelling charges for excellent ignition behaviour

Burning properties and mechanical integrity of aged propellants Gert Scholtes, 40th GARM, April 2005

ammunition

MEMs Exploding Foil Initiator (EFI)

Intrinsic safe

- No primary explosives
- Not sensitive to EM fields
- Precision timing for initiation (e.g. aimable warheads)
- Very reliable
- No need for out-of line of charge

Kapton foil Gert Scholtes, 40th GARM, April 2005

Development, evaluation and lifetime prediction of medium and large calibre ammunition

S

MEMs EFI: What you need

- Proper circuit with COTS components
 - Small high voltage power supply (several kV and kA)
 - Solid state Switching device
- Appropriate dimensions en properties of:
 - Exploding foil
 - Flyer plate
 - Strip-line
 - Barrel
- Pressed HNS-IV crystals at the right density

10 Development, evaluation and lifetime prediction of medium and large calibre ammunition

Development, evaluation and lifetime prediction of medium and large calibre ammunition

11

ammunition

Warhead: recrystallisation to obtain the next generation of explosives

Insensitive crystals for HE Warheads

HNF

Insensitive crystals for rocket propellants

Insensitive crystals for Booster Explosives Gert Scholtes, 40th GARM, April 2005

B Development, evaluation and lifetime prediction of medium and large calibre ammunition

13

CL-20

Warhead: characterisation of explosives

Warhead: Understanding the behaviour of explosives and IM 400

Warhead: Understanding the behaviour of explosives and IM Bullet/Fragme

The responses of a confined materials[®] *after the impact of a fragment.*

16 Development, evaluation and lifetime prediction of medium and large calibre ammunition

Bullet/Fragment testing and simulation

ammunition

Effectiveness: Fragmenting ammunition testing

- 60 m range for HE \leq 76 mm
- 200 m range for KE \leq 40 mm
- Bunker for \leq 25 kg TNT

- Fragment cloud analysis method
 - Rotational symmetry
 - Cylinder with windows
 - Cardboard soft recovery
 - X-ray shadowgraphs

Gert Scholtes, 40th GARM, April 2005

Effectiveness: Fragmenting ammunition testing

- Fragment distribution
 - Spatial
 - Velocity
 - Mass
 - Energy

Effectiveness: Munition Lethality/Platform Vulnerability

Terminal ballistics experiments & simulations

Lethality / vulnerability simulations

20

Development, evaluation and lifetime prediction of medium and large calibre ammunition

ammunition

22 Development, evaluation and lifetime prediction of medium and large calibre ammunition

Lifetime prediction: Ageing of missile

US AIM-7 Sparrow incidents (1997 & 1999)

SUSTAIN PROPELLANT

SUSTAIN PROPELLANT BOOST PROPELLANT BOOST PROPELLANT INTERNAL INTERNAL INSULATIO SEAL NOZZLE Figure 2, MK-58 Mod 2 rocket motor

US MK-58 Mod 2 motor

investigation

Source: paper P. Huisveld AVT-RTO-089, 2002 Aalborg

23 Development, evaluation and lifetime prediction of medium and large calibre ammunition

Lifetime prediction: Element "toolbox" for missiles

Surveillance of gun propellants

Range of 5 sample vessels covers the whole range of propellant grains

No pre-treatment of grain necessary

25 Development, evaluation and lifetime prediction of medium and large calibre ammunition

Surveillance of gun propellants

- Heat flow Calorimetry (HFC) with full size grains
- Heat generation in time as function of loading density of vessel
- →Munition like testing

26 Development, evaluation and lifetime prediction of medium and large calibre ammunition

Lifetime production and surveillance: Products

- Lifetime studies (Toolbox)
- <u>Surveillance methodology</u> for gun propellants (realistic comparison to ammunition situation, including
 - Equipment
 - Tailor made training programme
 - Tailor made munition management system
 - Guarantee and spare parts

27 Development, evaluation and lifetime prediction of medium and large calibre ammunition

Summary

- TNO Defence, security and safety is an independent organisation and a strategic partner for the Dutch Ministry of defence
- We also use our accumulated expertise for foreign governments and for defence related industries.
- R&D → development → prototyping → pre-production → production → in service, of munition: TNO has the expertise for Effective and Insensitive Munitions development.
- But also the expertise for lifetime predictions and surveillance of propellants.
- Combination of experimental facilities, theoretical knowledge/expertise and model/computer codes makes TNO a qualified partner for your future munitions development.

