

Decision Support for Time Critical Strike: Land Based Target Area Of Uncertainty (LBTAOU) Prototype

David Silvia Naval Undersea Warfare Center Newport, RI

10/18/2005

1

Partnership

Research and development center for submarine systems, autonomous underwater systems, and undersea offensive/defensive weapons

Serves as a liaison between the University of Massachusetts Dartmouth (UMASSD) and industry, forming partnerships with regional technology-based corporations and laboratories, providing educational and research opportunities for UMASSD students

Objectives

- To evaluate the application of Geographic Information Systems (GIS)-based decision support technologies to address Naval Capability Gaps
 - Persistent ISRT for accurate target discrimination and location (gap no. 5)
 - Rapid movement of mobile/emergent target data to shooters (gap no. 7)
 - Persistent high speed strike weapon to engage time critical targets (gap no. 12)

Key To Time-Critical Strike Capability

"We need a decision-making aid with software where we can tie in ISR and factor in such things as rules of engagement and other sensitivities, blast fragment pattern [to avoid collateral damage], target priority, target location, etc. That would really shorten the time between identifying a target and getting permission to drop.... "

Rear Adm. (select) Joseph F. Kilkenny, Office of the Chief of Naval Operations www.navyleague.org

Areas of Interest

- Time-critical, mobile targeting
 - Support High Speed Weapon and advanced versions of TacTom
- Integrated Land Attack
 - Assess tactical application for mission planning, loiter planning, and increasing situational awareness for the shooter
- Common Human Computer Interfaces (HCI)
 - Evaluate the use of GIS as a common presentation layer for complete situational awareness
- Develop solutions that extend to other tactical areas
 - Unmanned Aerial Vehicle (UAV) search planning
 - Unmanned Combat Aerial Vehicle (UCAV) targeting
- Examine and apply Artificial Intelligence to GIS applications
 - Apply Fuzzy Logic to spatial analysis
 - Predict target movements based on mission/intent

Tomahawk Background

- Block III
 - Used against high-priority, long-dwell targets
- Block IV or Tactical Tomahawk
 - Initial Operational Capability FY04
 - Additional capabilities
 - Satellite communication
 - In-flight retargeting
 - Loiter capability
 - Health and status reporting

The Problem

Limited capability against mobile, time-critical targets

- Weapons cannot be recalled, unlike an Unmanned Aerial Vehicle (UAV)
- Short endurance limits ability to loiter
- Call-For-Fire (CFF) requests
 - Require detailed mission planning
 - Response time may be significant
- During in-flight time, a target need only move a short distance to evade strike

Approach

To provide a tool that allows mobile targets to be quickly relocated/retargeted via an optimized search route based on :

Operating Terrain

Target Capabilities

Reconnaissance Vehicle Capabilities

Weapon Capabilities


Approach (Continued)

Search Areas

Typical AOU

Optimized AOU

Scenario

10

Using LBTAOU against a mobile, time-critical target:

- 1. Transporter/Erector/Launcher (TEL) has been identified as a target by UAV
- 2. Tomahawk (or High Speed Weapon) is targeted
- 3. A later pass of the UAV indicates the target is no longer present
- 4. LBTAOU calculates an optimized search region, search route, and loiter area
- 5. UAV is routed to search the region
- 6. Tomahawk's current position and fuel status is queried
- 7. Tomahawk loiters while the target is reacquired
- 8. Once the target is located, the optimal strike area is selected
- 9. Weapon is retargeted

Goals

- Identify the AOU for land-based targets as a function of
 - Target Parameters
 - Dimensions, turn radius, max speed, terrain capability, etc.
 - Geographic Features
 - · Roads, bridges, landmarks, elevation, terrain, rivers, etc.
- Provide optimized search routes
 - Reduce reacquisition times
- Provide optimal missile loiter position
 - Reduce missile loiter-to-strike time
- Identify target vulnerability windows in environment
- Identify optimal strike locations

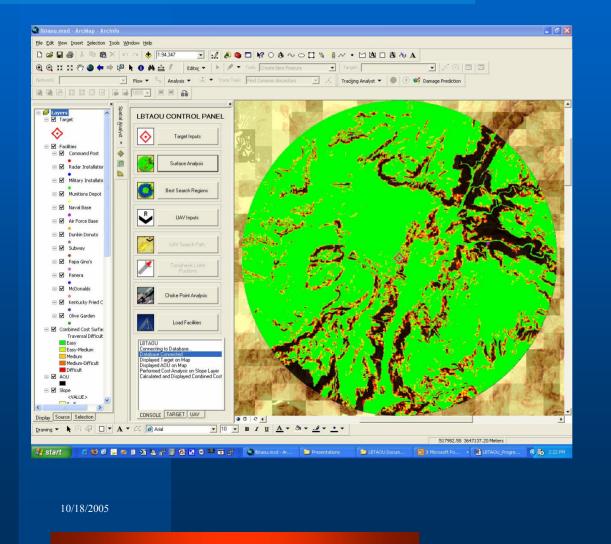
Employed Technologies

- Combine mature algorithms, motion analysis techniques, and Geographic Information Systems (GIS)
 - Reduces development time
 - Increases reliability
 - Decreases risk
- Employ GIS Spatial Queries for terrain data access
 - Describes relationship between map locations and geographic features

LBTAOU Terrain Data

- The LBTAOU prototype currently uses four terrain layers which include:
 - Slope
 - Compared to the max gradient of the targeted vehicle
 - Water Depth
 - Compared to the maximum water depth that the targeted vehicle can traverse
 - Terrain
 - Compared to the ground clearance and terrain capability of the targeted vehicle
 - Forest Density
 - Compared to the width of the land-based target

Current LBTAOU Algorithm Suite


- Combined Cost Surface
- Search Region
- UAV Search Route
- Loiter Position
- Battle Damage Query

Combined Cost Surface

Cost Surface of AOU

The Cost Surface
Algorithm will eliminate
any region that is
unreachable by the target,
and rate the difficulty to
traverse the land. This
region will be given a nontraversable value.

Non-traversable

Easy

Easy-Medium

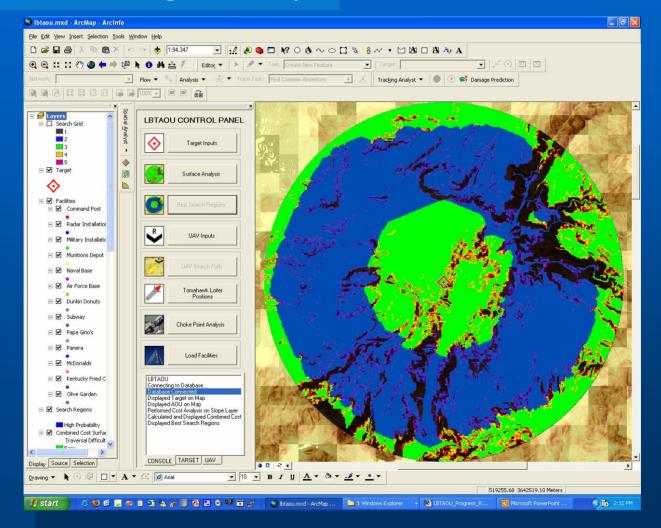
Medium

Medium-Difficult

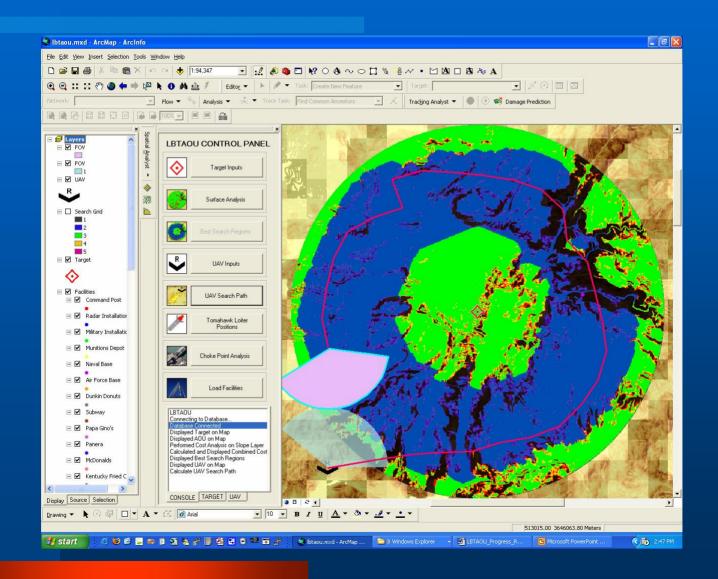
Difficult

Search Region

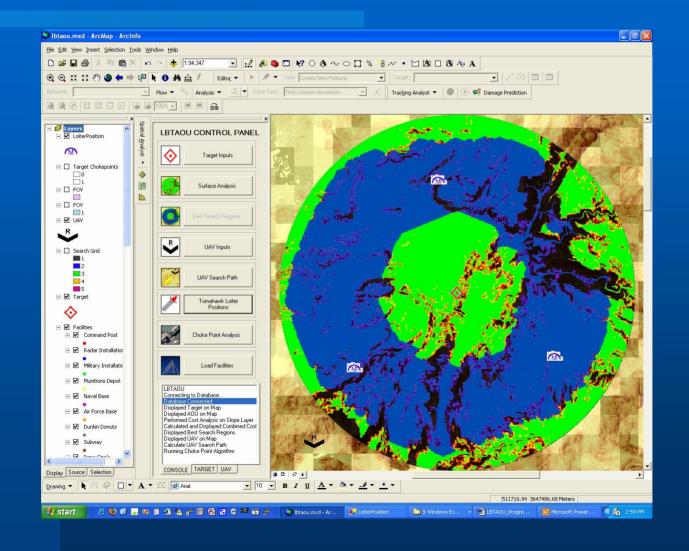
Determining the Search Region


- Calculate Cost Distances for land-based target.
 - Raster containing distance information extending from initial position
- Calculate Outer Extent of Search Region:
 - Cost Distance (meters) <= Radius of AOU (straight line distance)</p>
 - Radius of AOU = (MAX Speed) * (time elapsed)
 - Eliminates areas where target cannot possibly be in the elapsed time.
- Calculate Inner extent of Search Region:
 - Inner extent = INITIAL speed * time elapsed

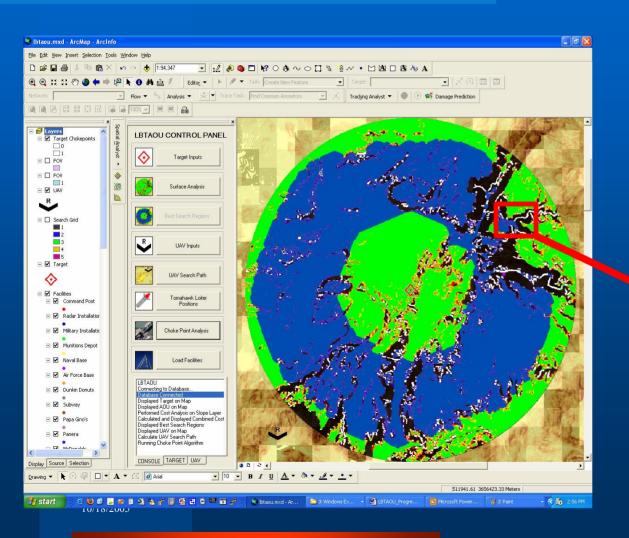
Search Region


Search Regions Overlay of Combined Cost Surface

UAV Search Route Example



Tomahawk Loiter Position



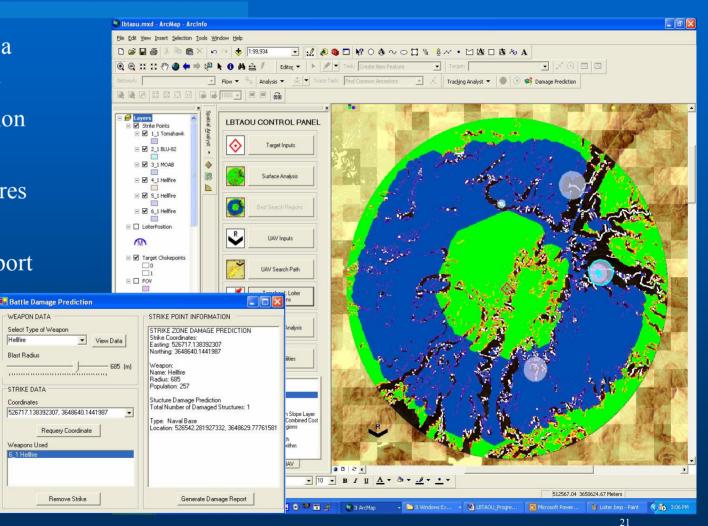
Choke Point Identification

- Determine areas that limited target's ability to evade
- These areas are represented in white

Battle Damage Query

- Graphically displays a strike from a weapon
- Displays the population in the area affected
- Describes the structures in the area affected.

• Generates a Web Report


WEAPON DATA

Blast Badius

STRIKE DATA

Weapons Used

using XML

Future Work

- Investigate application of Fuzzy Logic to GIS spatial analysis
 - Spatial features often do not have clearly defined boundaries, and concepts such as "steep," "close," or "suitable" can better be expressed with degrees of membership to a fuzzy set than with a binary yes/no classification.
- Apply AI to target movement prediction
- Explore Multiple Objective Decision Support
 - Determine best strike coordinates as a function of population and religious sites, within weapon capability restraints
 - Provide target prioritization based on target threat/intent, loitering weapon status, rules of engagement, etc.
- Develop sensor visibility performance models
 - Examine effects of weather on sensor performance
- Develop Command & Control Information Exchange Data Model (C2IEDM) interfaces
 - Supports NATO multilateral data connectivity
 - Supports Sea Trials

Point of Contact

David A. Silvia
Naval Undersea Warfare Center (NUWC)
Bldg. 1171 Code 2511
Newport, RI 02841
401-832-2869
silviada@npt.nuwc.navy.mil

david.silvia@navy.mil