

Challenges Drive Innovation™

Sensor Data Exploitation

David Toms, Director Business Development 703 963 1591 dtoms@mc.com

Agenda

- Mercury Introduction
- Battlefield challenges
- Airborne Reconnaissance Image Exploitation System (ARIES)
- Multi-Mission Computing
- Cell Processing: A (very) disruptive technology
- Questions / Discussion

Who We Are

The leading provider of high-performance, scalable, optimized multicomputing solutions for challenging environmental and compute-intensive requirements

Semi-conductor fab

Defense

3D Seismography

Digital X-ray

Defense Electronics Market

Sensor Processing

- Radar
- Signals intelligence
- Image intelligence

Across all environments

- Deployed in the air, on the surface, under the water
- Commercial and rugged, air-cooled and conduction-cooled

Full life cycle support

- From R&D through deployment
- Technology insertion in scalable configurations

Exploitation of Imagery

C4ISR in support of tactical operations is changing quickly – the need now is for rapid (a few minutes) extraction of actionable information from multiple airborne sensors.

Technology Reinforcements

Powering the migration of exploitation from ground to air

Airborne

Reconnaissance

Image

Exploitation

System

Our Vision

As Exploitation migrates from Ground Station to Platform, an IE system will require:

- High throughput
 - 200 GFlops, typ
- Large storage capacity
 - 1.5 TBytes, typ
- Optimized SWAP
- Multiple outputs
- Flexible sensor inputs
- Framework for multiple algorithm sourcing

ARIES

Notional Processing Chain

"What if" CONOPS

- ARIES push Clipping service target chips passed down as "bell ringers"
- Warfighters' pull from ARIES
 - "Look at this location" with EO/IR or SAR
 - "Show me everything from that location over last 24 hours"
 - "Cross cue additional sensor" such as HSI for MASINT
- View backwards to track point of origin
- Transfer data to incoming UAV or other aircraft for mission handoff
- "Low Bandwidth" ops should be the goal
 - Getting the Man out of the Loop

Multimission Computing

Programmable - Scalable - Reconfigurable

Multimission Computing

Change Missions on the Fly

- Adapt sensors and processors to new missions

Challenges Drive Innovation™

Cell: A (very) disruptive technology

Mercury's Relationship with IBM

In June 2005, Mercury announced a strategic alliance agreement with IBM offering Mercury special access to IBM expertise including the broadly publicized Cell technology.

Multicomputer-on-a-chip

How Is This Relationship Working?

Mercury CEO Jay Bertelli and IBM's Engineering and Technology Services GM Dr. Satish Gupta shake hands following signing of historic alliance between the two companies.

- IBM Engineering and Technology Services approached Mercury in the second half of 2004
- IBM E&TS is a servicesoriented organization that is highly complementary to Mercury's customer-focused product organization
- IBM and Mercury engineering teams are collaborating on design of Cell-based products
- Work has been underway on design of initial products for many months

Cell Processor Roadmap

•Architecture and frequency improvements driven by game consoles

- PS One launched in Japan in December 1994
- PS2 launched in Japan in March 2000, about 5 years later.
- PS3 unveiled on May 16, 2005. It will launch "Spring 2006", about 6 years later.

•Process shrinks likely (to reduce manufacturing cost) within the lifetime of a single console

- Should improve power characteristics
- May allow sorting for chips yielding at modestly higher frequencies.

© 2005 Sony Computer Entertainment Inc. All rights reserved. Design and specifications are subject to change without notice.

Cell BE Processor Block Diagram

- Cell BE processor boasts nine processors on a single die
 - 1 Power® processor
 - 8 vector processors
- A high-speed data ring connects everything
 - 192 GB/s maximum sustained bandwidth @ 3Ghz
- Flexible IO
 - Up to 60 GB/s
- Multicomputer on a single chip

Fast Convolution – Absolute Performance

Likely Applications

- We are actively engaged with customers on Cell technology in these industries:
 - Medical imaging, both traditional 2D and real-time 3D
 - Semiconductor inspection
 - Visualization & simulation
 - Seismic
 - Defense
 - Telecommunications

Summary

- Image Exploitation appears to be on the threshold of undergoing a sea change.
- Technology is here today which can greatly improve the way we operate
 - New high performance computers with large storage
 - New algorithms to support Image Exploitation
- Image exploitation is being driven from ground stations to sensor platforms
- Cell technology offers order-of-magnitude improvement in performance per processor
 - Significant improvement in performance per Watt