

Patricia M. O'Reilly, ARDEC
Erin Hardmeyer, ARDEC
Chad Sensenig, ARDEC
Ben Ashcroft, ATK – Thiokol
Dave Cleveland, JHU/APL
Bo Engel, AAI Inc
Paul Shipley, AAI Inc

Objective

- To re-establish, develop, and demonstrate a capability to manufacture Caseless
 Ammunition prototypes and characterize the High Ignition Temperature Propellant
- In support of the Lightweight Machine Gun and Ammunition Science & Technology Objective, deliver Caseless Ammunition for a ballistic demonstration
- Transfer technology to industry

- Why Caseless Ammunition?
 - Lightweight
 - Force Multiplier
 - Decreased Logistics Burden
 - High Ignition Temperature Propellant(HITP)
 Provides Improved Propellant Characteristics
 & Energetic Behavior
 - The State of the Art

Overall Program Requirements

Threshold requirements ("must haves")

- 35% Decrease in ammunition weight
- Same lethality as the 5.56mm M855 cartridge
- Environmentally friendly ammunition and process
- Low life-cycle costs

Extra requirements ("nice to haves")

- 40% decrease in ammunition weight
- Increased lethality over the 5.56mm M855 cartridge
- Same cost/round as current 5.56mm M855 ammunition

Why Use an HITP?

- Brass is a heat sink that is discharged with each round fired and provides structural strength
- Caseless ammo will not have a heat sink through mass discharge
 - HITP will need to provide significantly more insulation and thermal stability than typical ball powders
 - HITP will also need high degree of structural stability and maintain tolerances over operational temperature ranges
- Integration of this technology requires a system approach to be successful

- Background
 - Previous work performed under the Advanced Combat Rifle (ACR) Program
 - Technology Development funded by US (ARDEC) and Germany to Heckler & Koch(H&K)/Dynamit Nobel(DNAG)
 - Successful Demonstration of a Caseless Ammunition Rifle System
 - Technology Licensed & Transferred to the US at ARDEC

G11 Open Source Data

Caseless ammunition

Length Cross-section Total weight Projectile weight 33 mm/1.29 in. 8 × 8 mm/0.32 in. 5.20 g/0.18 oz. 3.25 g/0.12 oz. Ignition Mean gas pressure Muzzle velocity V_o

mechanical 3850 bar approx. 930 m/sec. 3051 ft./sec.

5.56mm Caseless Prototypes

Original Caseless Ammunition

- Technical Approach
 - Determine Feasibility
 - Identify and address technical challenges/potential risk areas
 - Near term & long term
 - Material needs and source suppliers availability
 - Assess equipment condition
 - Costs
 - Determined viability → Organizational Commitment
 - Re-establish capability and prototyping process utilizing existing technology
 - Validation of In-house Caseless Ammunition capability in a 5.56mm cartridge configuration in support of the Lightweight Machine Gun and Ammunition STO

- Characterization of HITP
 - Original Caseless HITP and ARDEC HITP
 - Chemical analysis of original caseless HITP (NMR, HPLC & GPC)
 - Propellant density
 - Thermal stability
 - Heat of Explosion
 - Hazards analysis friction, impact and ESD
- Demonstrate Producibility
 - Several hundred rounds have been produced from lab-scale propellant mixes
- Deliver Ammunition for testing
 - Conducted three ballistic firings in Mann Barrel @ ATF
- Transfer Technology to Industry
 - CRADA established with AAI

Caseless Firings

- Test Firing I
 - Five Shots
 - Chamber Pressure (8190-11314 psi)
 - Muzzle Velocity (589-1204 fps)
- Test Firing II (Addition of Booster Charge)
 - 12 Shots
 - Chamber Pressure (14372-62225 psi)
 - Muzzle Velocity (1489-2795 fps)
- Test Firing III
 - 14 Shots
 - Chamber Pressure (15992-24579 psi)
 - Muzzle Velocity (1000-1686 fps)

- Status of Progress
 - Next Steps
 - Continuing Characterization
 - Continue to manufacture qty of prototypes
 - Implementation of any processing improvements/fixes
 - Continue ballistic testing
 - Deliver prototypes for ballistic demonstration

- Technical Challenges being addressed as technology is transitioned:
 - Long term availability and identification of source suppliers
 - Material replacements
 - Environmentally friendly alternatives/ manufacturing processes for constituents
 - Manufacturing process

Summary

- Three Ballistic Test Firings
- Validation of the in-house capability proceeding
- Efforts focused to bring Caseless Ammunition Capability/Technology to a sufficient maturation level for transfer to industry
- Potential applications in other caliber ammunition as the propulsion charge

Status of JHU/APL Modeling

- IBHVG2 Model developed
 - HITP burn data
 - Single perf grain
 - ACR/G11 IB sequence recreated
- Reasonable results given limited data
 - Pressure & velocity close
 - Sensitivity analysis generally consistent
- Model will be updated as better data becomes available

ATK – Phase II Contractor for CL Propellant

- H&K's propellant used as a foundation
- ATK Thiokol's energetic thermoplastic elastomer (ETPE) gun propellant experience will provide processing and modeling experience
- Propellant options
 - HITP recreation of DNAG propellant
 - HITP development of new binder and combination of energetic ingredients
 - ETPE with insulating layer
 - LOVA with insulating layer
 - Consolidated ball powder with insulating layer

H&K Ammunition Design

Concept Model

- Critical Assumptions:
 - Surface area of consolidated ball powder
 - Burning rate of HITP insulating layer
- The system was modeled as shown here:

Preliminary IB Modeling

Future Work

- Determine optimum propellant formulation
- Develop process for low-rate production of caseless rounds
- Deliver ammunition for testing and evaluation
- Scale-up process for pilot-scale ammunition production

