

CB System Military Worth Assessment Toolkit

Chris Gaughan, ECBC
Dennis Jones, ITT
Derrick Briscoe, ITT
Jim Sunkes, ITT

Project Overview

- Overall goal: extension of the CB Sim Suite to better support military worth assessments
 - Support non-real-time simulations
 - Support platform through theater-level simulations
 - Support phenomenology effects
 - Collective Protection
 - MOPP
 - Decontamination
- Benefit to the Warfighter
 - Cost effective and timely means of analyzing the impact of CB defense materiel
 - Fixed sites
 - Mobile forces
 - Development of better-defined
 - System requirements
 - Tactics, techniques, and procedures

The CB Simulation Suite

- Three principal distributed simulations
 - The Nuclear, Chemical, Biological, and Radiological Environment Server (NCBR II)
 - CB Dial-A-Sensor (CB DAS)
 - CB Exposure Toxicity Server (ETS)

CB Simulation Suite Architecture

CB Sim Suite is a set of distributed simulation tools designed to represent all aspects of CB passive defense on the tactical battle field for application to analysis, testing, and training

NCBR II

NCBR II

- Simulates multiple CB events simultaneously in real time
 - Now expanding for smoke propagation
- Validated physics-based models for hazard propagation
 - DTRA's SCIPUFF
 - NSWC's VLSTRACK
- Terrain and meteorology effects
 - 4D met—external/OASES or scripted feeds
 - 3D terrain (CTDB, OOS ERC)

Medium Range Missile GB release yellow -> vapor green -> aerosol

NCBR II

- Communicates environment information with other simulators
 - DIS, HLA compliant
 - XML hazard output (outputs gridded, 3D hazard data)
 - 3D Gaussian puffs (air concentration)
 - 2D conformal grids (concentration, dose, ground deposition)
 - Supports
 - Sensor modeling (point, standoff)
 - 2D/3D visualization
 - Exposure modeling (ETS)

CB Dial-A-Sensor

CB Dial-A-Sensor

- Simulation tool (architecture) for representing any general technology class of CB particle and vapor sensors
 - Point and stand-off
 - Active and passive systems
- Capability to "dial" parameters to set performance characteristics for a known set of detector technology families
- Multiple data output mechanisms
 - Provide data to constructive simulations via DIS/HLA
 - Write data to a local file for analysis
 - Stimulate other system/operator software
 - Sensor user I/F
 - C2 messages

Exposure Toxicity Server

Exposure Toxicity Server

- Scalable methodology/tool for contamination and exposure tracking to support constructive simulation entity level simulation
- Selectable fidelity/methodology for human effects/lethality modeling
- Track effects status of entities in simulation

Exposure Toxicity Server

- Design Approach
 - Uses community accepted toxicity/lethality methodologies
 - Grotte/Yang for Chem
 - Allows user to select specific implementation (equation)
- Leverages/reuses CB Dial-A-Sensor infrastructure for exposure calculation, entity tracking and subscription
- Uses XML for interface to "accredited" underlying data (e.g., agent tox data)

Who Uses the CB Sim Suite?

- ECBC Research & Technology Directorate
- JPEO CBD JPM Contamination Avoidance
 - JSLSCAD
 - Artemis
- PM Recon (Fox NBCRV trainers)
 - Ft. Hood
 - Ft. Polk
- Aviation Technical Test Center (ATTC)
- Army Research Laboratory (ARL)

Who Uses the CB Sim Suite?

- US Army Training and Doctrine Command (TRADOC)
- Army Test and Evaluation Command (ATEC)
 Developmental Test Center (DTC)
 - Dugway Proving Ground (DPG)
 - Virtual Proving Ground
 - Future Combat System (FCS) Combined Test Organization (CTO)
- Army Maneuver Support Center (MANSCEN)
- OneSAF Objective System

Video showing the Sim Suite in action

Updating the CB Sim Suite

Updating the CB Sim Suite

- Develop and integrate time management into CB Sim Suite elements using HLA time management services
- Extend the existing ETS to include biological elements
- Develop and integrate additional representations and phenomenology
 - MOPP impacts
 - Collective protection
 - Support decontamination
- Develop an interface to widely-used constructive simulations

Development and Integration of Time Management into the CB Sim Suite

- Time management capabilities of HLA runtime infrastructure employed
- Updating components
 - ETS
 - CB DAS
 - NCBR
- Provides the ability to
 - Support slower- and faster-than real-time analyses
 - Support theater-level and aggregate-level simulations
 - Continue to support platform-level simulations
- The event manager class of each component is updated by utilizing time advance grants from the HLA runtime infrastructure
 - Overhaul of entire code

Time Management Defined

Time Management Definitions

Coordination

- Coordinated
 - Time advance is controlled via an external mechanism
- Independent
 - Time advance is controlled by federates

Advance

- Constrained
 - Time advance rate is uniform (across all federates)
- Unconstrained
 - Time advance rate is **not** uniform (within a federate and/or across federates)

Time Advance and Process Coordination Types

	Constrained	Unconstrained
Independent	•Real-Time and scaled Real-Time •DIS and non-Time Managed HLA	•N/A Meaningless in the Context of distributed simulations
Coordinated	•Not used in practice •Requires an external mechanism to control time	•HLA Time Managed •Federation driven time with non-uniform time advance

Time Advance and Process Coordination Types

		Constrained	Unconstrained.
Independ	ent	•Real-Time and scaled Real-Time •DIS and non-Time Managed HLA	All simulations in the exercise advance independently at the same rate using the same time scale (e.g., 1 sec = 1 sec) (constrained)
Coordina	Each simulation in the exercise advances at its own (unconstrained) time scale as coordinated by an exercise time/event		•HLA Time Managed •Federation driven time with non-uniform time advance

NCBR, DAS, & ETS Baseline	Constrained	Unconstrained
Independent	 Real-Time and scaled Real-Time DIS and non-Time Managed HLA 	•N/A Meaningless in the Context of distributed simulations
Coordinated	 Not used in practice Requires an external mechanism to control time 	•Federation driven time with non-uniform time advance

NCBR, DAS, & ETS End State

How Time Management Works

Process Initialization

- Initialize Process
- Request Time Regulation/Constraint

- Time Regulation/Constraint started
- Request Initial Time advance

•All the processes now complete any processing to get to time t0+a3

Proc #3 then issues another Time Advance Request

Next Iteration

Updating the CB Sim Suite

- Develop and integrate time management into CB Sim Suite elements using HLA time management services
- Extend the existing ETS to include biological elements
- Develop and integrate additional representations and phenomenology
 - MOPP impacts
 - Collective protection
 - Support decontamination
- Develop an interface to widely-used constructive simulations

Extend the existing ETS to Include Biological Elements

- Use a community-accepted toxicity model
 - LD₅₀ and probit slope considered
 - Recommendation from senior community
 - Knowledge Acquisition Matrix Instrument (KAMI) technique also considered
 - Analyzes the effects of bioagent-induced diseases
- Bio effects occur over extended periods of time
 - Delay between exposure and onset of symptoms/impacts
 - Most simulations do not last long enough for onset of effects
 - Need the capability to work exposure portion then effects portion
 - Predosing
 - "Jump time" during simulation/non-real-time simulation
 - Non-trivial problem
 - Research area

Updating the CB Sim Suite

- Develop and integrate time management into CB Sim Suite elements using HLA time management services
- Extend the existing ETS to include biological elements
- Develop and integrate additional representations and phenomenology
 - MOPP impacts
 - Collective protection
 - Support decontamination
- Develop an interface to widely-used constructive simulations

Develop and integrate additional representations and phenomenology

- MOPP Impacts
 - MOPP all functionality in ETS
 - "MOPPall" command
 - MOPP simulation effects need to be simulated in SAFs
 - Models need to be restructured to include
 - the loss of dexterity and mobility
 - greater effects of heat stress
 - increased protection to CB at an aggregate-level (scalable)
 - Dependent on SAF and interoperability means developed
- Collective Protection (preliminary work per this effort)
 - Movement of entities in and out of collective protection sites and contamination areas tracked
 - Dependent on SAF and interoperability means developed

Develop and integrate additional representations and phenomenology

- Support Decontamination (preliminary work per this effort)
 - A contamination module (extension of ETS) that determines the contamination of an entity (vs. dose) based on
 - the entity
 - contamination type
 - Vapor
 - Aerosol
 - Deposition
 - Interaction with the hazard
 - Contamination status reported as a function of
 - Decon technique
 - Duration of decon event
 - Level of contamination
 - Dependent on SAF and interoperability means developed

Updating the CB Sim Suite

- Develop and integrate time management into CB Sim Suite elements using HLA time management services
- Extend the existing ETS to include biological elements
- Develop and integrate additional representations and phenomenology
 - MOPP impacts
 - Collective protection
 - Support decontamination
- Develop an interface to widely-used constructive simulations

Develop an Interface to Widely-Used Constructive Simulations

- Work continues on identifying a potential tool
- Viable candidate
 - OneSAF
 - Objective System (OOS)/WARSIM
 - Testbed (OTB)
- Modifications required on both sides of the interface
 - Inputs from the SAF drive the Sim Suite
 - Flags need to be added for MOPP, etc.
 - Outputs from the Sim Suite need to affect the behaviors of the SAF
 - Effects of CB insults need to be modeled in the SAF behaviors

Summary

- CB Sim Suite provides significant capability used across multiple domains
 - R&D
 - T&E
 - Training
- Ongoing effort rounds out phenomenology and increases applicability
- Follow-on program to mature CB Sim Suite for transition

Questions/Comments