

Exploring Optimization Methodologies for Systematic Identification of Optimal Defense Measures for Mitigating CB Attacks

Roshan Rammohan, Molly McCuskey Mahmoud Reda Taha, Tim Ross and Frank Gilfeather University of New Mexico

**Ram Prasad** 

**New Mexico State University** 

# Outline



**The general architecture** 

**U** How the analytic tool relates to the architecture

**Optimization mode: the problem** 

**Optimization Techniques With Example Application** 

**Conclusions** 

# The General architecture







## The Analytic Tool "Exploration Mode"





**EGM: Engagement Generation Module** 

# The Analytic Tool: "Optimization Mode"



# Problem Statement

What is the *optimal way* to distribute *\$X* to *N* (*mitigating variables*) *defense measures* in order to reduce damage (*consequences*) *of a CB attack*?

#### The Analytic Tool: "Optimization Mode"



AND TECHNOLOGY OF

## **Analytic Toolbox**



#### □ Three main components



## **Component II: Optimization Module**



Mathematically, we can describe *the relation* as





The *optimization module* targets finding the optimal *defense measures*  $(\hat{\theta})$  and their associated *cost*  $(\hat{s} \times)$  that achieves a predefined set of consequences  $(C_{ex})$  considering all possible attacking engagementss.





The challenge is that the *function* that can describe the *relationship* between *CB attack parameters* (attack target, attacker, etc), the defense measures and the *attack consequences* is *unknown* 





Two optimization approaches can be used here

**Stochastic approximation** 

-Robbins Munro Optimization (RM)

Search Methods (Derivative free optimization)

- Genetic Algorithms (GA)

- Simulated Annealing (SA)



- The first technique is *Robbins Munro (RM)* as a technique to perform *stochastic optimization*.

-This method is designed to find the roots of *an unknown function f (\theta)* when the value of *f(\theta)* can be provided for any specified  $\theta$ 

- By replacing  $f(\theta)$  by its derivative  $f(\theta)'$ , the optimal defense measures  $\hat{\theta}$  to achieve prespecified consequences ( $C_0$ ) can be found.



# **Capabilities of RM**

-Due to the use of a numerical gradient in determining the rate of convergence, this method has *high ability to adapt to local rates* of change of the function along its many parameters.

# Limitations of RM

- There is an implicit assumption *about the function being unimodal*.



# *Genetic Algorithms (GA)* mimics laws of *Natural Evolution* which emphasizes "*survival of the fittest*".



In GA a "*population*" that contains different possible solutions to the problem is created.



#### Genetic Algorithms (GA)



The process is repeated until *evolution happens* "*a solution is found!*"



# **Capabilities of GA**

- In contrast to traditional techniques, *GA is the most likely technique to find global peaks* than traditional techniques.

## Limitations of GA

-Unlike traditional optimization methods, *GA is not the best module for handling continuous variables* 

- *Relative fitness* depends on probabilistic criteria of the variables that *might be unknown*.



-We have conducted a series of *research experiments* to compare efficiency of the RM and GA for *functions* with *different levels of complexity*.

- We examined the methods on two, three, four dimensional multivariates.

- We present here example results for optimizing *a two dimensional multivariate Gaussian functions*.





Two dimensional multivariate Gaussian functions







-It became obvious that **RM** *is very sensitive to the starting point* of the search. This is why RM algorithm *fell in almost all local minima* 

- On the contrary, **GA** is *not sensitive to initial start* and its temporal performance is better than RM.

- *However*, it is well known that *there is no optimal choice for optimization methods*, they are *problem- dependent* and thus *further research is needed*.

# **Example Application of GA**



**GA for Optimal Defense Measures Identification** 

- Here we used the **EGM using ANFIS** as the *relation model* and *examined* using **GA** to *identify* the optimal defense measures  $(\hat{\theta})$  for a given attack engagements.

- We operated the DS tool in
  - Exploration mode to validate EGM
  - Optimization model to examine GA

### **Exploration Mode**



#### **Engagement Description**

#### **CB** attack on a U.S. Air force in the Persian Gulf

- **Preparator**: Hostile foreign state
- *Motivation*: Interrupt Strategic functions
- *Military facilities*: Flight operation and support
- -Chemical/Biological agent: Vx
- Dispersal mechanism: Missile warhead: Cluster
- *Point of Release*: 2km SE of personnel area
- Other characteristics.....



#### **Exploration Mode**

| Consequences |          | Var 1   | Var 2      | Var 3     |
|--------------|----------|---------|------------|-----------|
| Casualties   | Expected | 150-350 | 150-250    | 150-250   |
|              | Model    | 377     | <b>263</b> | 346       |
| Cost         | Expected | 70      | 65         | 60        |
| (US \$ M)    | Model    | 72      | 57         | <b>65</b> |
| Days of Int. | Expected | 7       | 5          | 5         |
|              | Model    | 7       | 5          | 5         |

- EGM sensitivity to defense measures was examined.







- Predefined consequences include

| <b>Predefined level of Consequences</b> |     |  |  |
|-----------------------------------------|-----|--|--|
| Casualties                              | 430 |  |  |
| Remediation Cost \$M                    | 70  |  |  |
| Days of Int.                            | 7   |  |  |
| Cost of Add. S&T \$M                    | 170 |  |  |

## **Optimization Results**



The output of the *optimization module* was 250 *possible combinations of defense measures* that will

- Achieve a level of minimum *consequences*
- Limit the S&T dollars to the total available fund

The question becomes

Which solution to choose?





















## **Rank ordering**



In our problem, *ranking criteria are interactive*. In such a situation, *it is proved in decision theory that nonlinear aggregation operators are more efficient*.

# A few possible techniques

- Choquet Integral (CI)
- Multi criteria decision making (MCDM)

# Consequences If optimal defense measures are implemented



Threshold: 430



## **Consequences If optimal defense** measures are implemented



**Geo-political impact : 4** 



#### **Conclusions**



-We demonstrated the possible use of derivative-free optimization as an efficient system for optimization for finding the optimal S&T investments to minimize the consequences of CB attacks

-A two step optimization using GA proved more efficient than a onestage optimization methods in performing the analysis

- The optimization tool showed good accuracy in finding the optimal defense measures to minimize consequences due to CB attacks

- Research is currently on-going to integrate this method with rank ordering module.





## This research is funded by Defense Threat Reduction Agency (DTRA).

The authors gratefully acknowledge this funding.



