RELEASE and ATMOSPHERIC DISPERSAL of LIQUID AGENTS

Theo Theofanous (PI) University of California, Santa Barbara

Rich Couch, Program Manager Lawrence Livermore National Laboratory

S&T CBIS October 25-28, 2005

Operational Capability to be Provided

Controlling Mechanisms: VISCOELASTICITY

Rather than breaking into droplets, viscoelastic liquids tear into threads and sheets that resist pinch-off

Viscous

"Thickener" is added precisely for the purpose of controlling atomization . . .

Concentration and Length of Polymer Chain selected to "Tailor" Effect

Controlling Mechanisms: Aerodynamic History

Aerodynamic interactions result in a complex superposition of mechanisms that are highly sensitive to ρv^2 .

Scaling: From Droplet.....to Beer Can..... to Warhead Quantities

All Release Conditions are Achievable in Experiments

Using the Laboratory as Frame of Reference Makes Measurements Possible

ASOS Overall (1: 45)

A Hierarchy of Objectives

Local Scaling We, M, Oh, R_τ..... Lower Bound <u>Principally with Experiments/Theory/DNS</u>

System Scaling......Realistic/Predictive/Adaptable

mass ratio release (boundary) conditions aerodynamic history.....

shielding coalescence shock dynamics cloud permeability length scales (We,M,Oh,R_r) **Principally with Experiments/Theory/EFM**

Major Results

- On Data Base development we have proven all aspects of the experimental technique and begun Production Runs (well ahead of schedule),
- We have shown experimentally that VE drops can survive intact at We~ 4,000! Or 1/2ρv² = 2 10⁵ !
- We developed a theoretical understanding of the mechanisms for Newtonian/Viscous liquid breakup over the whole range of regimes, unified all data, and corrected major, long-standing misconceptions,
- On DNS we achieved the sharp treatment of interfaces, and established capability to compute instabilities on shocked, high acoustic impedance mismatch interfaces.

Scope of this Presentation

- Develop Data Bases (Experiments) 10⁴ < ¹/₂ rv² < 10⁵, M=3 (ALPHA II); ND, VD ;
- Understand Key Physics (Discrete/Dilute) Break-up Regimes with Newtonian (Viscous) Liquids
- Understand Key Physics (Discrete/Dilute) Break-up Regimes with Viscoelastic Liquids (Small Drops)
- Sharp Treatment of Interfaces

Fidelity of Instability Prediction by DNS

Scope of this Presentation

- Develop Data Bases (Experiments) 10⁴ < ¹/₂ rv² < 10⁵, M=3 (ALPHA II); ND, VD ;
- Understand Key Physics (Discrete/Dilute)
 Break-up Regimes with Newtonian (Viscous) Liquids
- Understand Key Physics (Discrete/Dilute)
 Break-up Regimes with Viscoelastic Liquids (Small Drops)
- Sharp Treatment of Interfaces

Fidelity of Instability Prediction by DNS

We have the first Newtonian Particle Size Distributions in the shear regime

100 µm

Stage Arrangement

Stages I – V are sampling stages using high-speed cameras.

Unit: mm

Breakup at $\frac{1}{2} \rho V^2$ of 10⁵ Pa

3.8%PSBMA+TBP *d* = 3.4 mm, *We*=29,000

Breakup History at the Dynamic Pressure of 10⁴ Pa

Breakup History at the Dynamic Pressure of 10⁴ Pa

Breakup History of a Polymeric drop at the dynamic pressure of 10⁵ Pa

Breakup History at Dynamic Pressure of 10⁵ Pa

Scope of this Presentation

- Develop Data Bases (Experiments) $10^4 < \frac{1}{2} rv^2 < 10^5$, M=3 (ALPHA II); ND, VD;
- Understand Key Physics (Discrete/Dilute)
 Break-up Regimes with Newtonian (Viscous) Liquids
- Understand Key Physics (Discrete/Dilute)

Break-up Regimes with Viscoelastic Liquids (Small Drops)

Sharp Treatment of Interfaces

Fidelity of Instability Prediction by DNS

R T P

We=28, d=3.8mm, Po=15pa

We=44, d=3.7mm, Po=23pa

We=56, d=3.7mm, P₀=30pa

We=58, d=3.7mm, P₀=31pa

We=63, d=3.7mm, Po=35pa

We=109, d=3.9mm, Po=55pa

We=183, d=3.7mm, Po=100pa

3-4

We=68, d=3.7mm, P₀=37pa

We=299, d=3.7mm, Po=160pa

Close-up of a TBP drop at Dynamic Pressure of 10⁵ Pa

S I E

TBP drop, d=3.5 mm, We=31,000 (Movie) Frame-frame time interval=80 μs

We now have a Comprehensive Understanding of the Regimes of Aerobreakup for Newtonian Liquids

T.G.Theofanous, et al,, ASME JFE, 2004 and IUTAM Elsevier, 2006.

We now Understand how Viscous, Newtonian Liquids Break up.

Scope of this Presentation

- Develop Data Bases (Experiments) 10⁴ < ¹/₂ rv² < 10⁵, M=3 (ALPHA II); ND, VD ;
- Understand Key Physics (Discrete/Dilute)
 Break-up Regimes with Newtonian (Viscous) Liquids
- Understand Key Physics (Discrete/Dilute)
 Break-up Regimes with Viscoelastic Liquids (Small Drops)
- Sharp Treatment of Interfaces

Fidelity of Instability Prediction by DNS

Drop Generator – Polymer Drop

Polymer drop at $We_0 = 4500$

d=0.6 mm, Drop velocity V=200 m/s

Polymer drop at $We_0 = 4100$, 153mm Downstream

d=0.5 mm, Drop velocity V = 335 m/s,

 $We = 0.21 We_0$

Scope of this Presentation

- Develop Data Bases (Experiments) 10⁴ < ¹/₂ rv² < 10⁵, M=3 (ALPHA II); ND, VD ;
- Understand Key Physics (Discrete/Dilute)
 Break-up Regimes with Newtonian (Viscous) Liquids
- Understand Key Physics (Discrete/Dilute)
 Break-up Regimes with Viscoelastic Liquids (Small Drops)
- Sharp Treatment of Interfaces Fidelity of Instability Prediction by DNS

Single Vortex 4 AMR levels: 512² (8 processors) 2 AMR levels: 128² High-resolution simulations

V. Sharp Reconstruction (SR) of interface jump conditions

Grid convergence test

Grid convergence test

Major Results

- On Data Base development we have proven all aspects of the experimental technique and begun Production Runs (well ahead of schedule),
- We have shown experimentally that VE drops can survive intact at We~ 4,000! Or 1/2ρv² = 2 10⁵ !
- We developed a theoretical understanding of the mechanisms for Newtonian/Viscous liquid breakup over the whole range of regimes, unified all data, and corrected major, long-standing misconceptions,
- On DNS we achieved the sharp treatment of interfaces, and established capability to compute instabilities on shocked, high acoustic impedance mismatch interfaces.