

A Bayesian Approach for Assessing Confidence in a Biological Warfare (BW) Detection Event

Mr. Patrick L. Berry U.S. Army Edgewood CB Center 5183 Blackhawk Rd., ATTN: SFAE-CBD-BD APG, MD 21010-5424 <u>patrick.berry@us.army.mil</u> (410) 436-5522, DSN 584-5522

Background

- BW detection challenges
 - Diversity of potential agents
 - Very low effective concentrations
 - Many properties in common with natural background constituents, present in much higher concentrations
- Reliability of results
 - Most current technologies lack high specificity
 - Fielded systems incorporate multiple technologies and/or arrays
- Reliability can be further enhanced by fusing multiple detection results with other BW attack indicators

OBJECTIVE – Present conceptual Bio Detection Decision Model to stimulate application development

Joint Program Executive Office for Chemical and Biological Defense oint Project Manac **Biological Detection Decision Model INTEL Data** C4ISR Data **CBRN** Data **Biological Detection Decision** Model **Medical** Weather Data Data Pr (BW | Evidence) = Probability that a BW attack has occurred

given all available information

Key Decision Model Elements

- Detector Performance
 - Receiver Operating Characteristic (ROC) curves
- Decentralized Observations
 - Geographic Areas of Interest (AOI)
 - -Valid Time Intervals
- Decision Methodology
 - Bayesian Belief Network \rightarrow Pr (BW | Evidence)

Joint Program Executive Office for Chemical and Biological Defense

0.9

High

0.5

Selectivity = Pr (~Det|~BW) = TN/(TN+FP)

Sensitivity & Selectivity can be computed from performance data, but what we really want to know is Pr (BW|Det) or Pr (~BW|~Det)

Joint Program Executive Office for Chemical and Biological Defense

Bayesian Networks

Advantages of Bayesian Networks

- Provide a means to decompose a joint probability distribution into a set of local distributions
 - Model structure independent from quantification of conditional probabilities
 - Nodes → Pertinent Variables
 - Arcs → Linkages (Dependencies)
 - Only local distributions require quantification
 - Subjective beliefs and discrete or continuous probabilities can be used
 - Efficient inference algorithms guarantee computation of joint distribution
- Successfully applied to diverse military applications
 - Unmanned Underwater Vehicle control system
 - Ship anti-torpedo and anti-missile defense systems
 - Mine detection
 - Ground/air target tracking
 - Commander's decision aids

Joint Program Executive Office for Chemical and Biological Defense

Bayesian Network Model

BW Attack Indicators	Positive Detections	Pr (BW Evidence)
Threat_level = Moderate	None	0.02
Met_stability = Neutral	Det_1	0.53
Radar_detect = Aircraft	Det_1, Det_3 & Det_A	0.96

Biological Detection Information Flow

Net-Centric Environment

Conclusions

- Bayesian Networks provide the basis for a coherent biological detection decision model
 - Effectively fuse prior beliefs and probabilities with diverse detector and battlefield observations
 - Provide numerical probability that a BW attack has occurred
 - Substantially increase reliability of generic BW detectors
 - Provide IPB decision tool for allocation and placement of BW detection assets
- Areas for further investigation
 - Identification of all pertinent variables and linkages
 - Methodology to account for spatial and temporal dispersion of detector results
 - Application of likelihood methods for agent classification or identification