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The Problem

Allocation of Science & Technology (S&T) 
research funding to maximally reduce the 
threat and consequences of CB attacks on 
critical assets is complex and very hard 
to optimize globally.



Design Goals

• Develop an analytic and algorithmic framework 
for threat consequence minimization.

• Create a feasible system architecture to evaluate 
modeling, analysis approaches, and user 
interactions within this framework.

• Enhance decision process transparency.



Initial Architecture
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Specification of Scenarios

• Possibility Trees 
• Spanning sets of scenarios
• Vectors of consequences per scenario
• Possible continuous scenario space
• Possible continuous consequence space



Creating Models of Consequences, 
Costs, and Effectiveness

• Relate remediation funding level to its 
effectiveness against a given scenario’s 
consequences.

• Scientific Simulations
• Machine learning models
• Knowledge based systems



Details of Architecture
Consequence Flow Model
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Mockup Mathematical Model
Assumes only one type of consequence per scenario.

NumScenarios NumRemediations

Expected Conseq =  α Σ conseq(k) * likelihood(k) * Π (1-effectivity(k,m)) 
k=1                                                             m=1 

Where:
∗ α is a normalization constant, 
* conseq(k) is a real scalar, 
* likelihood(k) is a probability (sums to 1), 
* $(m) is a real (sums to $ Total = 1),
* effectivity(k,m)  =   β(k,m) * F($(m)), 
∗ β(k,m) = rand(0,1).  

User Adjustables:
a) {likelihood(k), k=1, NumScenarios} 
b) {$(m), m=1, NumRemediations} 



Optimization Loop
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Optimization
Allocation of funds to minimize expected consequences
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Mockup: $n(k+1) = $n(k) - eta * gradient( Expected Consequences)



Temporal Dynamics
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Features of visualization
• Goal: transparency into computational model and 

decision process.
• Consequence-flow metaphor
• Real-time user adjustable parameters
• User viewpoint control to manage complexity
• Drill-down for more details
• Animation of calculations and optimization
• Complementary sound representation of system 

states and dynamics
• Implemented in Flatland.



Flatland:  modular applications
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Displays: visual and sound



Widely applied



Visualization of Mockup System
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Visualization of Mockup System

Scenario Tree

Individual Scenarios



Visualization of Mockup System

Quantitative readouts



Visualization of Mockup System

Budgetary components



Visualization of Mockup System

Multicomponent consequences Multicomponent effectivities



Visualization of Mockup System

Components of consequences

Scenario likelihood

Individual Scenario



Visualization of Mockup System

Scales for accurate user adjustment



Future advancements

• Integration with models and 
optimization,

• Integration with scenarios,
• Scalable scenario & remediation 

representations,
• Effectivity model representations,
• Quantitative measures of 

performance.



Invitation to demonstration 
at the 

University of New Mexico
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Center for High Performance Computing

- Thursday -

Contact:  tpc@ece.unm.edu




