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The Problem

Allocation of Science & Technology (S&T)
research funding to maximally reduce the
threat and consequences of CB attacks on
critical assets Is complex and very hard

to optimize globally.



Design Goals

e Develop an analytic and algorithmic framework
for threat consequence minimization.

o Create a feasible system architecture to evaluate
modeling, analysis approaches, and user
Interactions within this framework.

e Enhance decision process transparency.
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Specification of Scenarios

o Possibility Trees

e Spanning sets of scenarios

 \Vectors of consequences per scenario

» Possible continuous scenario space

* Possible continuous consequence space




Creating Models of Consequences,
Costs, and Effectiveness

* Relate remediation funding level to its
effectiveness against a given scenario’s
consequences. A A

* Scientific SimulatiorngrEeees
 Machine learning mogers
e Knowledge based systems




Detalls of Architecture

Consequence Flow Model
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Mockup Mathematical Model

Assumes only one type of consequence per scenario.

NumScenarios NumRemediations
Expected Conseq = o Z conseq(k) * likelihood(k) * | | (1-effectivity(k,m))
k=1 m=1
Where:

* o 1S @ normalization constant,

* conseq(K) is a real scalar,

* likelihood(k) is a probability (sums to 1),
*$(m) is a real (sums to $ Total = 1),

* effectivity(k,m) = B(k,m) * F($(m)),

* B(k,m) = rand(0,1).

User Adjustables:
a) {likelihood(k), k=1, NumScenarios}
b) {$(m), m=1, NumRemediations}



Optimization Loop
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Optimization

Allocation of funds to minimize expected consequences
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Mockup: $,(k+1) = $,(k) - eta * gradient( Expected Consequences)



Temporal Dynamics
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Features of visualization

Goal: transparency into computational model and
decision process.

Consequence-flow metaphor

Real-time user adjustable parameters

User viewpoint control to manage complexity
Drill-down for more details

Animation of calculations and optimization

Complementary sound representation of system
states and dynamics

Implemented in Flatland.




Flatland: modular applications
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Displays: visual and sound







Visualization of Mockup System
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Visualization of Mockup Syste
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Visualization of Mockup System
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Quantitative readouts




Visualization of Mockup System
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Visualization of Mockup System
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Multicomponent consequences Multicomponent effectivities
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Vlsuallzatlon of Mockup System
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Visualization of Mockup System
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Scales for accurate user adjustment




Future advancements

Integration with models and
optimization,

Integration with scenarios,

Scalable scenario & remediation
representations,

Effectivity model representations,

Quantitative measures of
performance.



Invitation to demonstration
at the
University of New Mexico
Visualization Laboratory
Center for High Performance Computing

- Thursday -

Contact: tpc@ece.unm.edu






