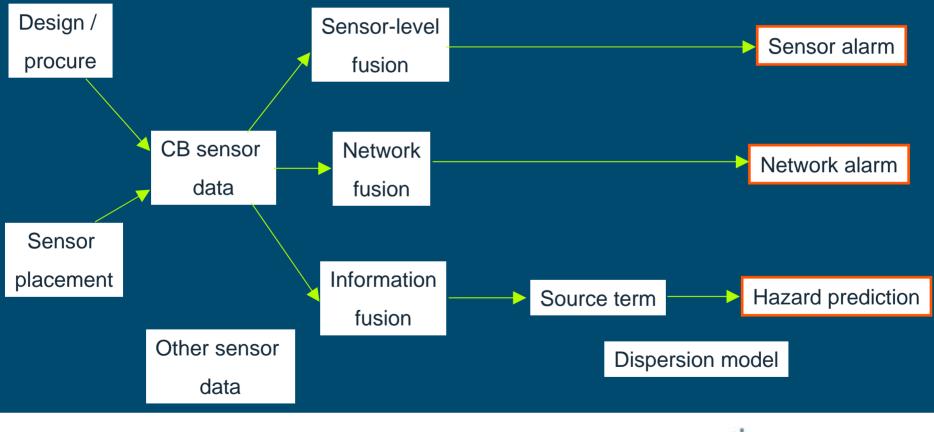
[dst] Fusion of Sensor and Model Data

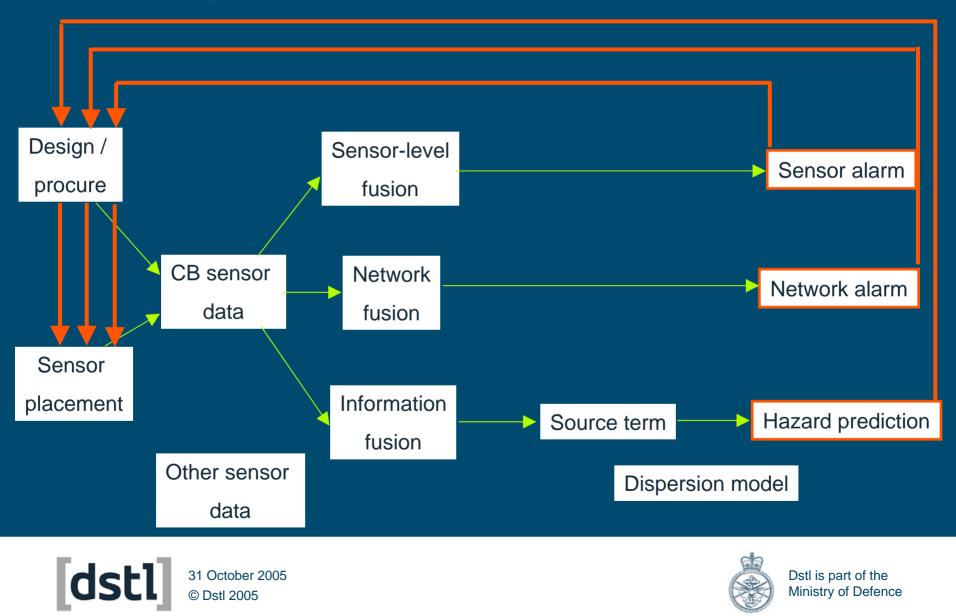
Deb Fish, Oliver Lanning and Paul Thomas

The big picture...



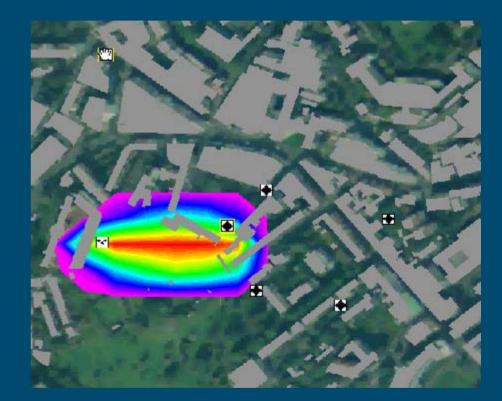
31 October 2005 © Dstl 2005

The big picture...



1) Sensor placement

- 1) Place sensors to maximise probability of any sensor detecting a release
- 2) Place sensors to maximise detection capability of the sensor network
- 3) Place sensors for optimal hazard prediction
- 4) Target UAVs and other mobile sensors...

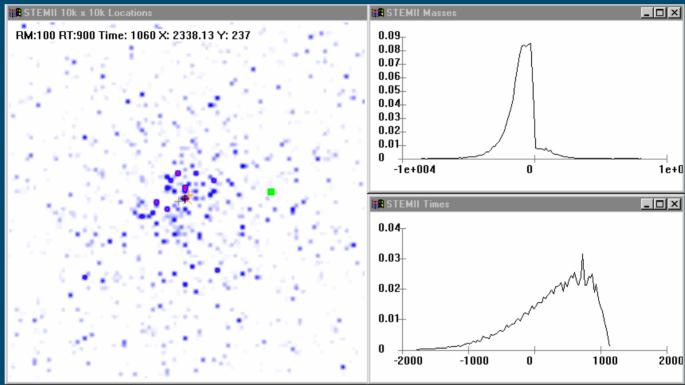


2) Sensor procurement

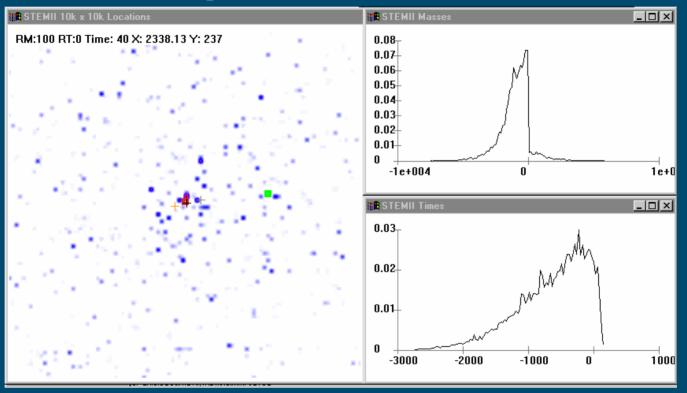
1) Design individual sensors based on key metrics

- sensitivity
- probability of detection
- false positive rate
- response time
- 2) Procure heterogeneous network of sensors to optimise key metrics at the system level, for the area to be protected
- 3) Design sensor network to optimise quality of hazard prediction

Optimal biosensor for identification - resonant mirror



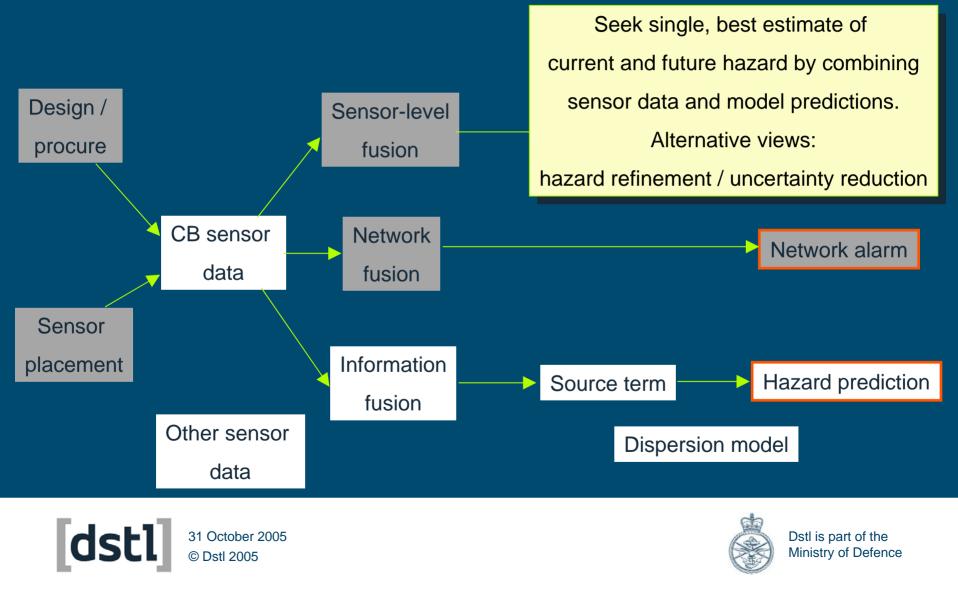
Better biosensor for hazard prediction - particle counter?



Impact of single sensor on source term estimation only - conclusions are limited!

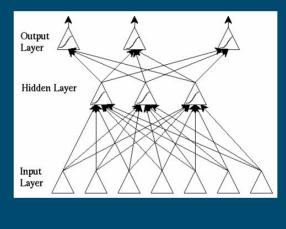
dst 31 October 2005 Dstl 2005

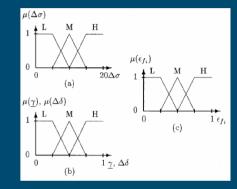
3) Fusion of sensor and model data

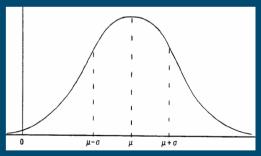


3a) Literature Review

- Investigated wide variety of possible methods
 - Bayes theory
 - Kalman Filter
 - Fuzzy Logic
 - Genetic Algorithms
 - Neural Networks
 - Variational Assimilation
 - Optimal Interpolation







 Chosen short list of suitable techniques for implementation into a synthetic environment

> 31 October 2005 © Dstl 2005

Bayesian fusion

$$p(H \mid D) = \frac{p(D \mid H) p(H)}{p(D)}$$

- Mathematically rigorous
 - ✓ incorporates uncertainty
- ✓Simple in concept
- Incorporates prior knowledge
- Can be extended to incorporate any information
 - ✓ observer range and bearing

- × No absolute probabilities
- × Difficult to implement (complex integrals)
- × Computationally demanding

31 October 2005 © Dstl 2005

Kalman filter

$$\mathbf{x} = \mathbf{x}^{\mathbf{b}} + \mathbf{K} \left(\mathbf{y} - \mathbf{H} \mathbf{x} \right)$$
$$\mathbf{K} = \left(\mathbf{B}^{-1} + \mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H} \right)^{-1} \mathbf{H}^{T} \mathbf{R}^{-1}$$

- Sequential predictor-corrector data fusion method
 - incorporates uncertainty
- Provides prediction of the error covariances
- Incorporates prior knowledge

× KF only for linear models

- × Use extended or ensemble KF for non-linear models
- × Can be computationally demanding

Variational Data Assimilation

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^{\mathbf{b}})^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}^{\mathbf{b}}) + \frac{1}{2} \sum_{i=1}^{N} (\mathbf{y}_i - \mathbf{H}\mathbf{x}_i)^T \mathbf{R}^{-1} (\mathbf{y}_i - \mathbf{H}\mathbf{x}_i)$$

✓ Variational method

- Assimilates all sensor data simultaneously
- Determines optimal analysis by solving the cost function
 - Provides gradient of analysis

- × Can be very computationally demanding
- × Does not determine the analysis directly

Overview of optimal techniques

	Use observations at the same time	Use a time sequence of observations	
Sequential	Optimal Interpolation	Kalman Filter, Bayes	
Variational	3DVAR	4DVAR	

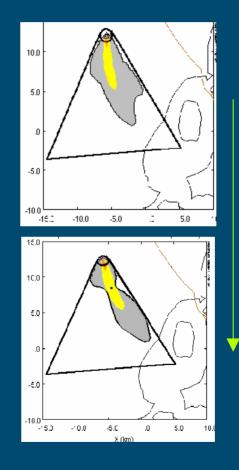
- Most interested in techniques that use a time sequence of observations
 - Assumption that observations occur at the same time introduces additional error
- Comparison of sequential and variational methods

3b) Uncertainty propagation

- Crucial to quantify uncertainty in model predictions, as well as sensor data
 - source magnitude, time and location (x,y,z)
 - number of sources
 - meteorology (in complex environments) and turbulence
 - effects (e.g. casualties)
 - is data representative?
- MOD-funded uncertainty project

31 October 2005

Dstl 2005



Reduce uncertainty, refine hazard

Uncertainty propagation

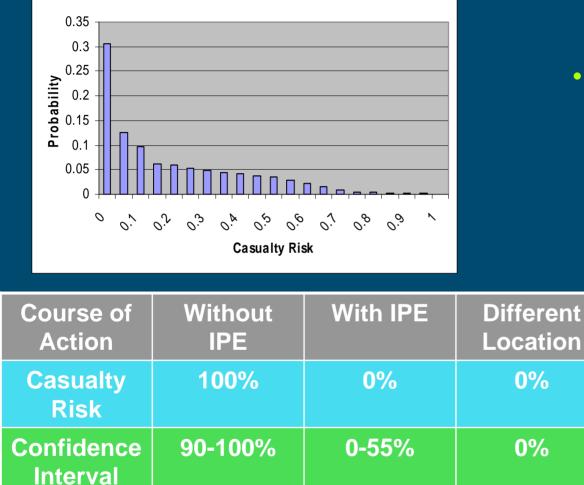
Course of	Without	With IPE	Different
Action	IPE		Location
Casualty Risk	100%	0%	0%

31 October 2005

Dstl 2005

- Dstl have developed an uncertainty propagation framework:
 - takes probabilistic output from SCIPUFF / UDM
 - propagates uncertainty in casualties due to
 - respirator
 - breathing rate
 - toxicology
 - medical counter measures

Uncertainty propagation

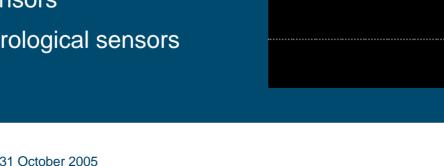


- Dstl have developed an uncertainty propagation framework:
 - takes probabilistic output from SCIPUFF / UDM
 - propagates uncertainty in casualties due to
 - respirator
 - breathing rate
 - toxicology
 - medical counter measures

3c) Sensitivity study

- Vary each input parameter in turn
 - source m,x,y,z,t
 - meteorology
 - turbulence
- Use synthetic environment to determine effect on output from range of possible sensors
 - CB sensors
 - meteorological sensors

Dstl 2005



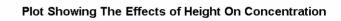
3c) Sensitivity study

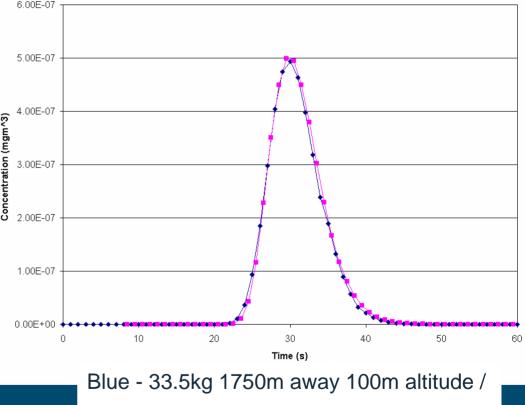
Identify inputs that have

- little effect on sensor output
 - neglect \Rightarrow simplify problem
- correlations with other inputs
 - retrieve dominant input
 - use knowledge of correlations to understand / estimate uncertainty in hazard prediction
- large effect on sensor output
 - apply short-listed techniques to retrieve these inputs

31 October 2005

Dstl 2005

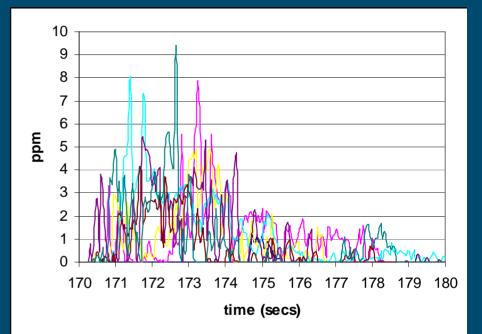




Pink - 6 kg 1000m away 10m altitude

3d) Implementation in synthetic environment

- It is essential to test the shortlisted techniques in a realistic synthetic environment
 - meteorological forecasts subject to significant error
 - 30° error common
 - experimental concentration profiles show strong effects of turbulence
 - no sensor is perfect

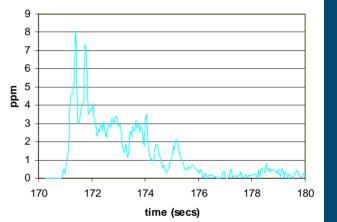


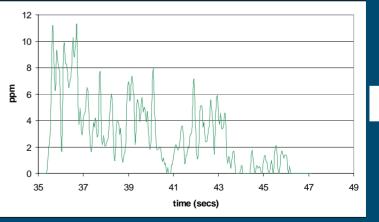
Measured effects of turbulence

31 October 2005 © Dstl 2005

3d) Implementation in synthetic environment

- It is essential to test the shortlisted techniques in a realistic synthetic environment
 - meteorological forecasts subject to significant error
 - 30° error common
 - experimental concentration profiles show strong effects of turbulence
 - no sensor is perfect





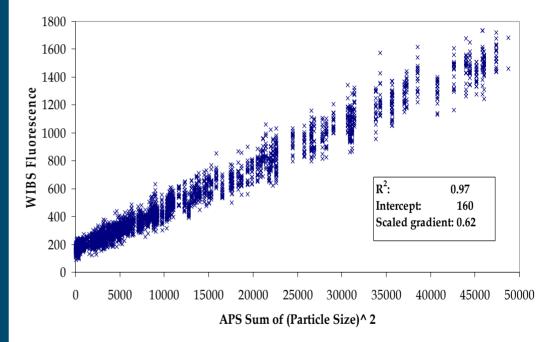
Model

Stl 31 October 2005 © Dstl 2005

Synthetic environment

- Dstl's synthetic environment includes
 - model of meandering puffs
 - UDM
 - model of turbulence within puff
 - realistic sensor models
 - biological background model
 - Monte Carlo variation of model parameters

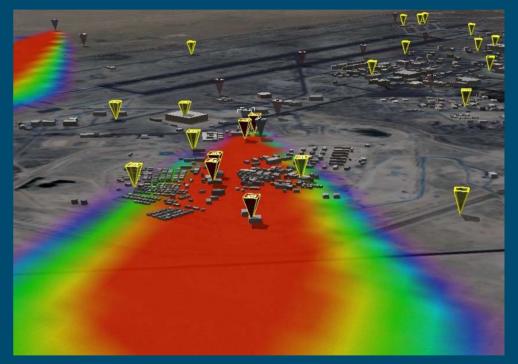
Spray of NADH in water solution (0.642% concentration)



Analysis of data for biological sensor model

Future plans

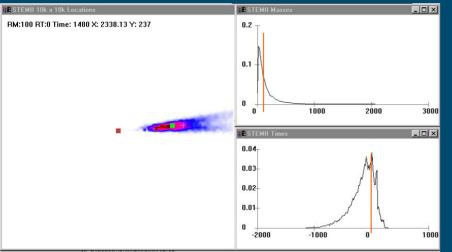
- Completion of sensitivity study
 - what information do we attempt to retrieve?
- Test short-listed techniques in synthetic environment for chemical, then biological releases
 - Biological data fusion complicated by fluctuating biological background
 - quantitative metrics (A_{FN} , A_{FP})



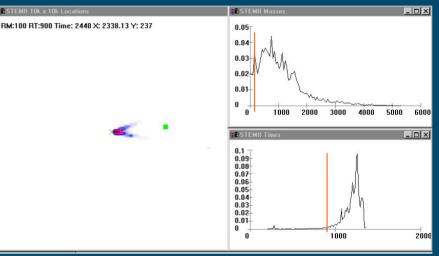
Biological sensor fusion

Biological sensor model

Simple particle counter sensor



Immuno-Assay detector



Low fidelity, analogue signal

High fidelity, digital (2 state) signal

Try to explain better sion: Information requirements differ depending on decision to be made

