
## Reliable Discrimination of High Explosive and Chemical / Biological Artillery Using Acoustic Sensors

#### US Army RDECOM-ARDEC

By: Myron E. Hohil, Sachi Desai, and Amir Morcos





S&T CBIS Session B Paper 3087

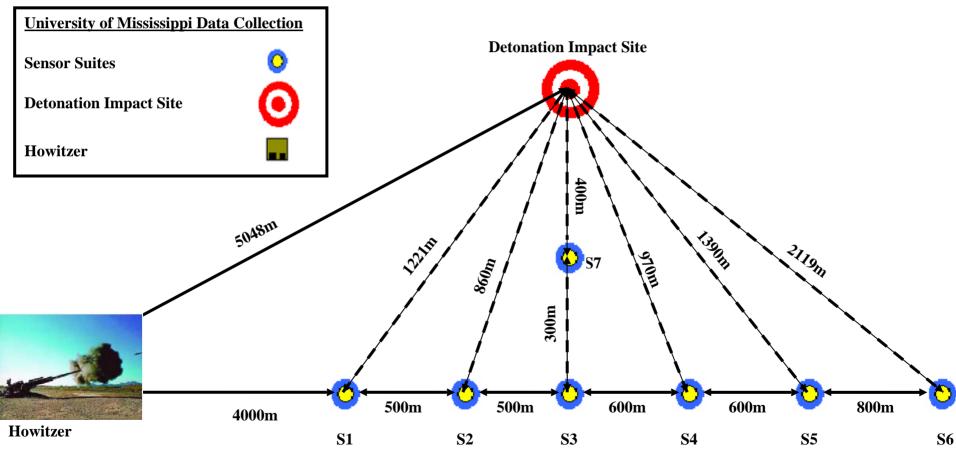


# Chemical and Biological Weapon Threats and Needs

- Determining if an incoming artillery round contains High Explosive material or Chemical/Biological agent on the battlefield.
- Providing field commanders with greater response time using a stand alone acoustic sensor.
- Giving greater situational awareness to threatened soldiers.






# Acoustic Signature Data Collection of Blast Events

- Yuma Proving Ground Data Collection.
  - Conducted by National Center of Physical Acoustics (NCPA) in cooperation with ARDEC.
  - 39, rounds fired.
  - 3 categories of rounds were used, HE, Type A CB, and Type B.
- Dugway Proving Grounds Data Collection.
  - Conducted by DPG Team and U.S. Army Edgewood Chemical Biological Center (ECBC) .
  - 265, rounds fired.
  - 2 categories of rounds were used, HE and Type A CB.

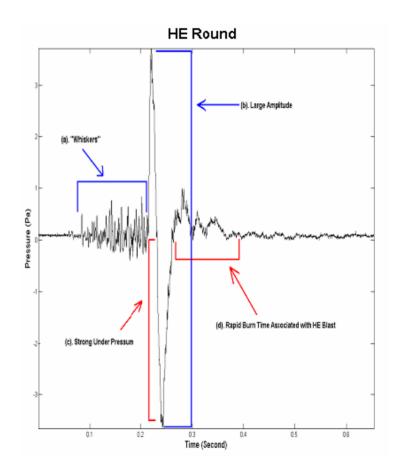




# Yuma Proving Ground (YPG) Test Layout






11/1/2005

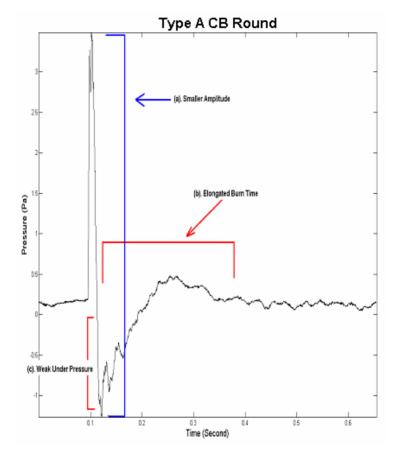
S&T CBIS Session B Paper 3087



# Typical Blast of HE Round

- High frequency precursors to the main blast.
  - Generated by Supersonic Shrapnel Elements.
- Large Amplitude of Main Blast.
- Large under pressure element .
  - Generated by large comparable weight of explosives rapidly burning.
- Short Duration Signatures.






11/1/2005

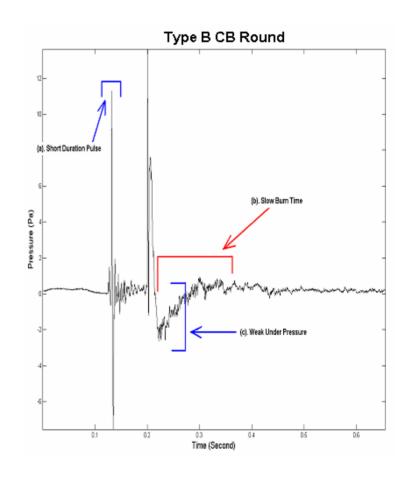


# Typical Blast of Type A CB Round

- Small amplitude associated with main blast.
  - The explosive material is minimal compared to the comparable HE round type.
- Elongated burn time following main blast.
  - The deliberately slow to properly release the compounds.
- Weak under pressure.






11/1/2005



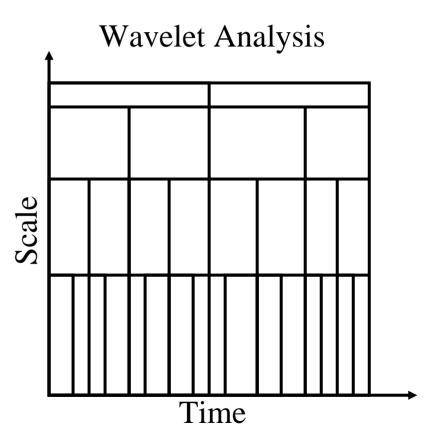
**a b** 

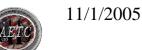
## Typical Blast of Type B CB Round

- Short Duration Pulse.
  Resulting from base
  - ejection rounds.
- Weak Under Pressure.
  - Small amount of Explosives.
- Slow Burn Time.
  - Elongated to properly discharge contents of the round.






11/1/2005




**a** b

#### Wavelets

- Efficiently represent nonstationary, transient, and oscillatory signals.
- Desirable localization properties in both time and frequency that has appropriate decay in both properties.
- Provide a scalable timefrequency representation of artillery blast signature.

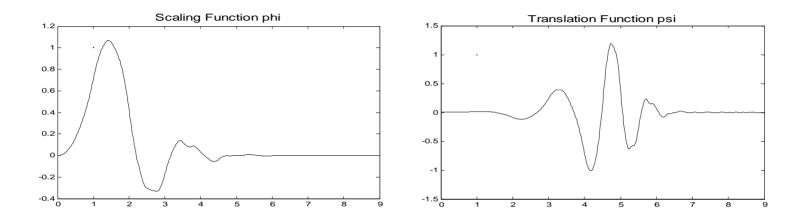






**a** a

# Discrete Wavelet Transform (DWT)


- Derived from subband filters and multiresolution decomposition.
  - Coarser Approximation.
  - Removing high frequency detail at each level of decomposition.
- Acts like a multiresolution transform.
  - Maps low frequency approximation in coarse subspace high frequency elements in a separate subspace.

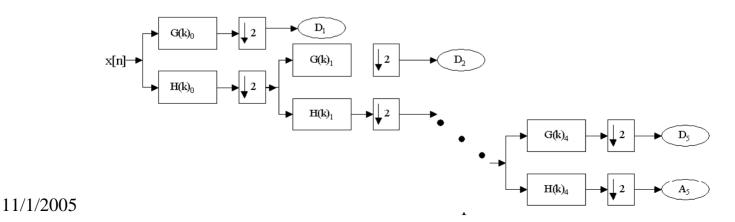
Defining Parameters Scaling Function  $\phi(x) = 2^{\frac{1}{2}} \sum_{k=0}^{L-1} h_{k+1} \phi(2x-k)$ Wavelet Function  $\psi(x) = 2^{\frac{1}{2}} \sum_{k=0}^{L-1} g_{k+1} \phi(2x-k)$ 





#### Daubechies Wavelet n = 5



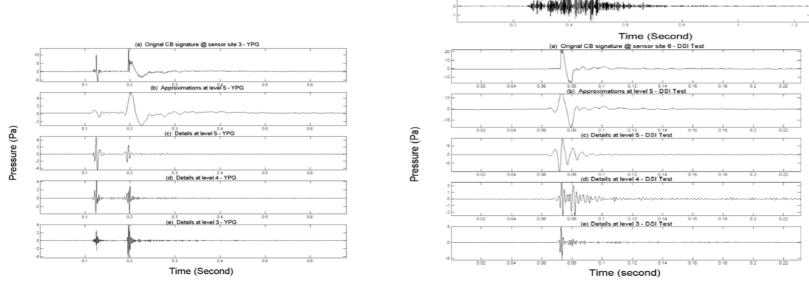

- Representation of the scaling and translation function of db5.
  - Scaling function resembles blast signature of the HE and CB rounds.
  - Provides the ability to approximate signal with the characteristic wavelet.





## Multiresolutional Analysis

- Using a series of successive high pass and low pass filters to create a set of subspaces.
  - High pass filter obtains the details of the signatures while the low pass filter obtains a coarse approximation of the signal.
- The resulting banks of dyadic multirate filters separate the frequency components into different subbands.
  - Each pass through gives you resolution of factor 2.








# Effects of Wavelet Decomposition

• Wavelet decomposition to level 5 of three varying blast types from varying ranges.



Pressure (Pa)



11/1/2005

S&T CBIS Session B Paper 3087

Approximations at level 5 - DSI Ter

(c) Details at level 5 - DSI Tes

Details at level 3 - DSI Te

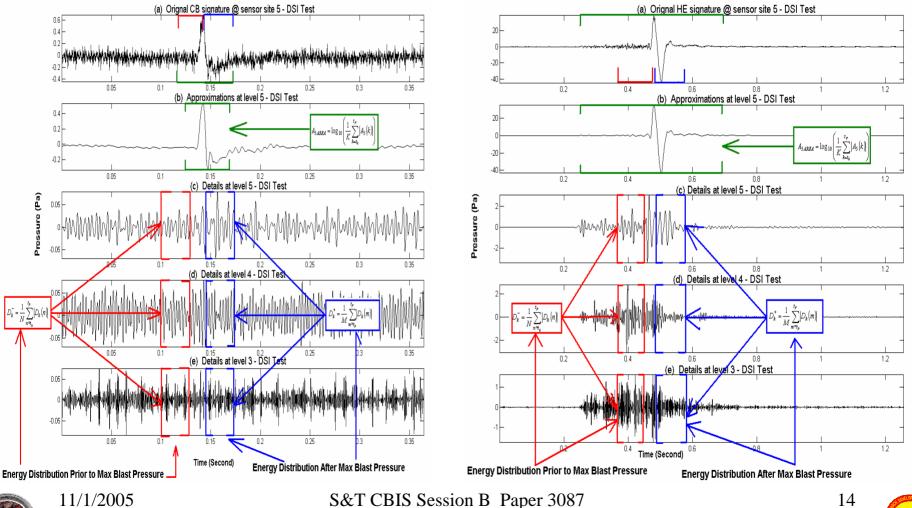
el 4 - DSI Te



#### Wavelet Extracted Features

- Comprised of primitives derived from the normalized energy distributions within the details at level 5, 4, and 3 of the wavelet decomposition.
- Distribution of blast type differ greatly when taken prior to the max pressure,  $D_k^- = \frac{1}{N} \sum_{n=t_0}^{t_p} |D_k(n)|$ , with respect to distribution after the max blast,  $D_k^+ = \frac{1}{M} \sum_{m=t_p}^{t_F} |D_k(m)|$ .
- Resulting Ratio.  $x_{Dk} = \log_{10} \left( \frac{D_k^-}{D_k^+} \right)$

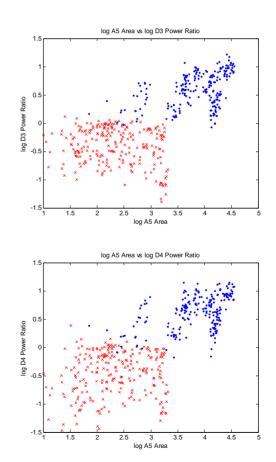
- A5 area is a feature derived from wavelet coefficients at level 5.
- Integrating the magnitude of the area for the coefficients between the start and stop times.


$$A_{5AREA} = \log_{10}\left(\frac{1}{K}\sum_{k=t_0}^{t_F} |A_5(k)|\right)$$



11/1/2005

S&T CBIS Session B Paper 3087

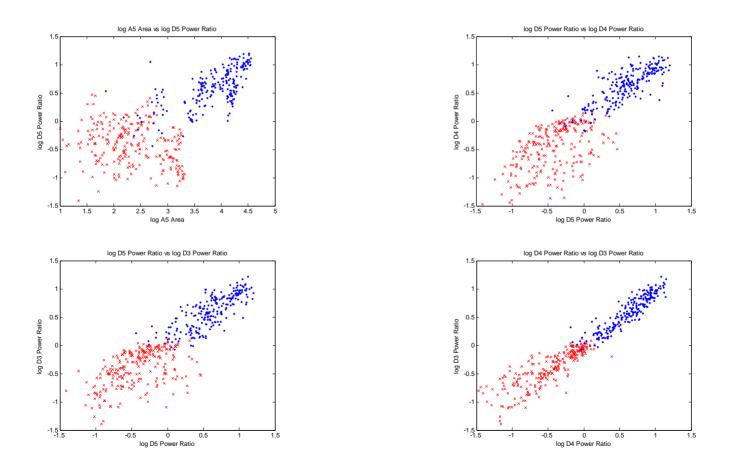

## Extracted Features Using DWT



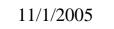


## 4-tuple Feature Space

- This energy ratio leads to the discover of 4 features with A5 area that are not amplitude dependent.
- Our n-tuple feature space thus becomes a 4-tuple space,  $x^{p} = [x_{D5}^{p}, x_{D4}^{p}, x_{D3}^{p}, A_{5AREA}^{p}]$ , to be applied for classification.





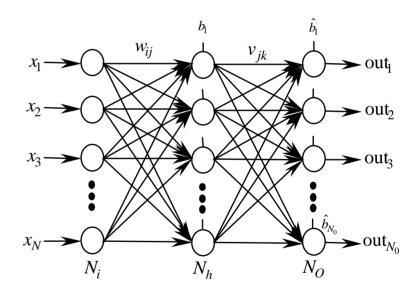


15

**a** b

#### **2-D** Feature Space Realization







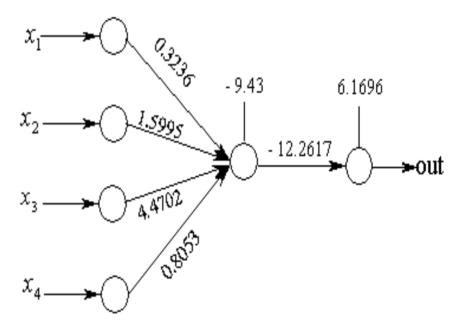

S&T CBIS Session B Paper 3087



#### Neural Network

- Realize non-linear discriminant functions and complex decision regions to ensure separability between classes.
- Standard Multilayer Feedforward Neural Network.
- Number of hidden layer neurons depend on complexity of required mapping.








**a** b

# Results of Training Neural Network to DSI Data

- Feature Space created using DWT.
  - 4-tuple feature vector.
  - $x^{p} = \left[ x_{D5}^{P}, x_{D4}^{P}, x_{D3}^{P}, A_{5AREA}^{P} \right]$
  - 22 randomly selected vectors from 461 signatures.
- Trained Neural Network to trained output data of 0.
  - Single hidden layer neuron.
  - Total error in equation after training is less then 5e-3.
  - Learning rate of 0.1.







**a** b

## Results of HE/CB Discrimination

- Experiment 1.
  - Applying a neural network with the weights in the table 1 to DPG data, 99.1% Correct Classification.
- Experiment 2.
  - A neural network containing 4 hidden layer neurons trained using entire DPG dataset tested against NCPA dataset, 96.9% Correct Classification.

| W <sub>i1</sub> | $W_{i2}$ | W <sub>i3</sub> | $W_{iA}$ | <i>v</i> <sub><i>j</i>1</sub> |
|-----------------|----------|-----------------|----------|-------------------------------|
| 11.6967         | 0.5343   | -0.4958         | -2.4991  | -13.4966                      |
| 4.6377          | 1.2455   | 3.5569          | 5.3068   | 13.3761                       |
| 4.7023          | 0.9875   | 7.3951          | 8.902    | -15.3761                      |
| -5.2246         | 1.481    | 2.6982          | 4.1203   | -19.6513                      |
| -2.8169         | 1.4847   | -18.9732        | -23.6088 | -14.286                       |

| Experiment # | Training | Test Data | Classification | Percentage |
|--------------|----------|-----------|----------------|------------|
|              | Data     |           |                |            |
| 1            | 11 CB    | 225 CB    | 225 CB / 0 HE  | 100%       |
|              | (DSI)    | (DSI)     |                |            |
|              | 11 HE    | 214 HE    | 210 HE / 4 CB  | 98.10%     |
|              | (DSI)    | (DSI)     |                |            |
| 2            | 236 CB   | 166 CB    | 165 CB / 1 HE  | 99.40%     |
|              | (DSI)    | (YPG)     |                |            |
|              | 225 HE   | 57 HE     | 51 HE / 6 CB   | 89.50%     |
|              | (DSI)    | (YPG)     |                |            |





## Blind Results of HE/CB discrimination

#### • Experiment 3.

 Utilizing the neural network containing 4 hidden layers neurons trained against the entire "known" DPG data set was then tested against the "blind data" the results once compared with the truth resulted in 98.3% and 95.7% reliable classification.

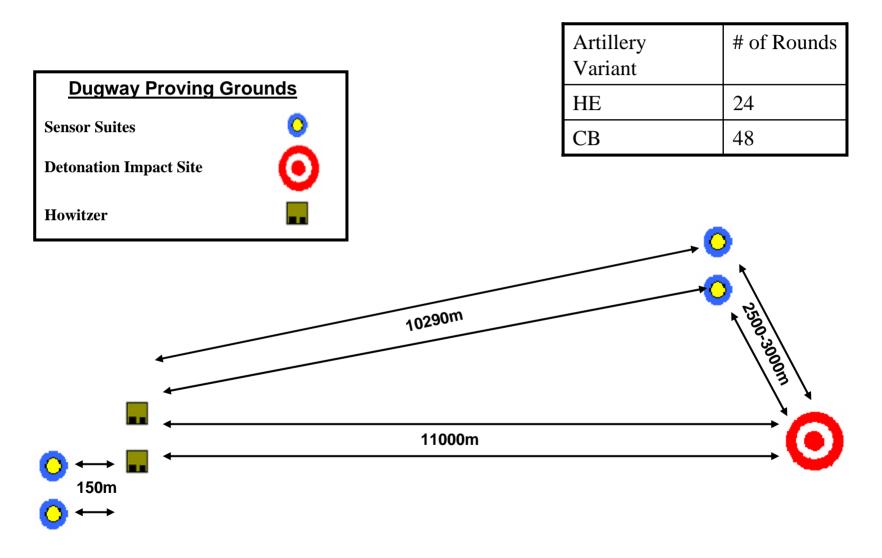
| $W_{i1}$ | $W_{i2}$ | Wi3      | $W_{iA}$ | <i>v</i> <sub><i>j</i>1</sub> |
|----------|----------|----------|----------|-------------------------------|
| 11.6967  | 0.5343   | -0.4958  | -2.4991  | -13.4966                      |
| 4.6377   | 1.2455   | 3.5569   | 5.3068   | 13.3761                       |
| 4.7023   | 0.9875   | 7.3951   | 8.902    | -15.3761                      |
| -5.2246  | 1.481    | 2.6982   | 4.1203   | -19.6513                      |
| -2.8169  | 1.4847   | -18.9732 | -23.6088 | -14.286                       |

| Experiment<br># | Training Data  | Test Data      | Classification | Percentage |
|-----------------|----------------|----------------|----------------|------------|
| 3               | 236 CB (Blind) | 230 CB (Blind) | 226 CB / 4 HE  | 98.3 %     |
| S Sassion P     | 225 HE (Blind) | 184 HE (Blind) | 176 HE / 8 CB  | 95.7 %     |





### Experiment 4 Real Time Implementation


- Portable Area Warning Surveillance System (PAWSS).
  - 1yr Limited Objective Experiment (LOE).
  - Focused on the utility of cascading detection methodologies.
  - Combines Stand-off CBRN systems to address both force/installation protection.
- LOE Outcomes.
  - Operable Products leading to fully designed products that are sustainable.
  - Demonstration of capabilities within simulated battlefield environments of layered wide area cascading detection.







#### PAWSS LOE Test Layout







## PAWSS LOE Results

- June 19<sup>th</sup>-28<sup>th</sup> Portable Area Warning Surveillance System (PAWSS) Limited Objective Experiment (LOE).
- Implemented real time version of CBRN Discrimination at PAWSS LOE conducted by ECBC.
- 100% single volley discrimination, never tested against dual volley, still 83%, also all event starts were detected for 100%.
- Assist in transition and support of acoustic element CBRNEWS ATD extending LOE efforts.

| Event Type   | # of Events | Discriminated Correctly |
|--------------|-------------|-------------------------|
| Single Round | 38          | 38/38; 100%             |
| Dual Round   | 34          | 28/34; 83%              |





#### Real Time Performance

- During June 21<sup>st</sup> and June 22<sup>nd</sup>, 2005 a proof of concept test was conducted for the acoustic CBRN discrimination algorithm.
  - PAWSS Test Site, DPG.
    - Acoustic System 2.5km-3km from Impact Zone.
  - A C++, real time algorithm was tested at DPG as part of the acoustic portion of PAWSS LOE conducted by JPM for NBC Contamination Avoidance at ECBC.
  - A total of 72 HE/CB rounds were detonated.
    - A howitzer fired 24 HE, and 48 CB rounds.
- Single Round Volley Results.
  - 38 Airburst Detonation (14 HE, 24 CB), 100% Correct Classification.
- Multiple Round Volley.
  - CBRN Algorithm Never Benchmarked in Lab vs. Multiple Rounds.
    - 2 Rounds simultaneously fired followed by a 3<sup>rd</sup> round fired soon as possible.
  - 34 Airburst Detonation (10 HE, 24 CB).
    - 17 events, each event consisted of 2 detonations.
  - 83% Overall Correct Discrimination of HE/CB.
    - 100% discrimination on all HE rounds.
    - 100% acoustic detection of all events.
    - 28 correctly discriminated from 34 detonations.
    - Shortcomings occur within the data acquisition process, limited by processing window size.





## Conclusion

- Features extracted facilitate robust classification.
  - Reliable discrimination of CB rounds, 98.3% or greater of single volley events.
- The features this algorithm is based on go beyond previous amplitude dependent features.
  - Degradation due to signal attenuation and distortion is nullified and exceeds 3km in range propagation.
- Scalable time frequency representation uncovered non-readily detectable features.
  - Subband components remove higher frequency noise features.
  - Isolating the details of higher oscillatory components.
- Real time verification at PAWSS LOE of CBRN Discrimination Program Implemented in C++.
  - Single volley round discrimination in real time for all variants was 100%.
  - Dual volley round discrimination in real time for all variants was 83%, and detected an event 100% of the time.
- Wavelets can be possibly used to discriminate varying types of artillery projectile launches from impacts independent of range.
  - Utilizing wavelets and other signal processing techniques to perform a similar task as described within with refinement for the problem.
- Future Considerations.
  - Networking of sensors can provide TDOA abilities to further localize a threat.





## Acknowledgements

- Chris Reiff from Army Research Lab for his assistance in providing data sets from the DSI test.
- David Sickenberger and Amnon Birenzvige at Edgewood Chemical and Biological Center (ECBC) providing detailed documentation about the test at DSI.
- Edward Conley at ECBC allowing us to participate in the PAWSS LOE.



