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Problem Formulation

Given $M, let θ=(θ1,…,θk) be the mitigating variable of some 
asset, find “optimal” allocations (x1,…,xk) to (θ1,…,θk) to 
minimize consequences c=(c1,…,ck) of an CB attack to the 
asset, and rank these allocations according to various possible 
“preferences” of decision-makers.
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Problem Formulation
Example:
Asset: An airbase
Money: $M=1million
Defense Measures:

θ1: chemical agent detector  
θ2: biological agent detector
θ3: perimeter protection
θ4: trained onsite personnel
θ5: chemical prophylaxis
θ6: biological prophylaxis
θ7: medical treatment

Consequences:

c1: number of casualties
c2:cost of remediation
c3:number of days of 

operation disruption
c4:negative geo-political 

impacts



Problem Formulation
• Optimal Allocations

We need to formulate an “objective function”.

Ω is the space of allocations, 
Ψ is the space of consequences.
The optimization problem is Min ϕ(x1,…,xk) subject to
, which is an optimization problem with multiple objectives. In principle, 
the problem can be solved by standard techniques using decision-makers’
preferences and value trade offs.
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Problem Formulation
• How to obtain the objective function 

The relation between X=(x1,…,xk) and the consequence 
ϕ(X) is:

a) c(θ): the consequence c is a function of θ.  
(Data/Scenarios from experts).

b) θ(X): is a function of X. (Cost model).
So, 
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Problem Formulation
Example 1: An Example of Objective Function
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Where:

∗α is a normalization constant, 
*p is the number of scenarios, 
*c0

i(s) initial consequence before improvements for the sth scenario, 
*L(s) is a probability (sums to 1), 
*θj(X) is the number of detectors of the ith kind, it is a function of X.
*e(s, θj(X) ) is the effectivity of the ith kind of  defense measure on the 

scenario s.



Problem Formulation
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Minimize

subject to
Using simulated annealing, we get:

Minimum

(25.0077    0.0053   24.9808   24.9981    0.0004   25.0076)
(24.9952   24.9950    0.0072   25.0397    0.0052   24.9578)
(24.9629   24.9837    0.0278   24.9988   25.0181    0.0087)
(0.0309   25.0083   24.9321   25.0111   25.0168    0.0007)
(0.0366   25.0442   24.9996    0.0079   24.9497   24.9620)
(24.9827   24.9416   25.0395    0.0117   25.0086    0.0160)
(24.9924   25.0519    0.0210    0.0217   24.9539   24.9592)  

9.6074 
9.6074 
9.6076 
9.6075 
9.6076 
9.6075 
9.6076 
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Problem Formulation

Histogram for optimal allocations (X=$100).
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Problem Formulation

Component-wise optimization is not a proper solution 
for our multiple  objective problem.

Example 2: Minimize ϕ(x1,…,xk) over a constrained set A
with predetermined acceptable consequences levels. 
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Architecture
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RANKING
Ranks 

allocations 
using 

Choquet 
Integral, 

AHP, Multi 
Objective 

Programming

OPTIMIZATION 
Minimizes utility 
function C=ϕ(x) 

subject to: 
Xx ≤∑  

and 
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- Utility 
function 
C=ϕ(X) 
 
- Human 
interface: 
questionnaire 

OUTPUT
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ANALYTIC TOOLBOX 
INPUT 

- Data from 
scenario tree: 
mitigating 
variables θ's, 
likelihood, 
consequences
… 
- Total 
budget $X 
- Acceptable 
consequences

C
)

 
- Cost model 



Optimization
1. Optimization of the problem in Example 2. 

Minimize total cost                       subject to 
for j=1,…,m, where

*k is the number of defense measures (mitigating variables)
*wi is the cost of improving θi by one unit
*∆θi is the improvement in defense measure facilities θi
*cj is the jth consequence component in the initial variant (data)
*eij is the decrease in the result cj of a scenario attack if we increase θi by one
*m is the number of components of a consequence vector after an attack
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Optimization

Let

We want to find ∆θi’s such that                              is minimized.           
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Optimization

),...,( 51 θθ ∆∆
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10 options of                    with their corresponding amount
of money.

),...,( 51 θθ ∆∆

=(14,1,1,1,1), with M=97;
=(11,2,1,1,2), with M=99;
=(13,2,1,1,1), with M=99; 
=(9,1,1,1,4), with M=100;
=(11,1,1,1,3), with M=100;
=(13,1,1,1,2), with M=100;
=(15,1,1,1,1), with M=100; 
=(10,3,1,1,2), with M=101;
=(12,3,1,1,1), with M=101; 
=(6,2,1,1,5), with M=102;



Optimization

Histogram for the options
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Optimization
2. Optimization of vector-valued “utility function”

using decision-makers’ preferences.
To optimize ϕ(X)=(c1(X),…,cm(X))T where X=(x1,…,xk), we 
can use the common method of weighted linear  combination 
of the components cj (X), i.e., optimize 

where wj is the scaling weight for cj.
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Optimization

How to obtain the wj’s?
Example: Let c1(X)=repair cost ($), c2(X)=human 
casualties. The overall utility function is expressed in $. 
So w1=1. Decision makers will be asked to express their 
preferences among consequences leading to the 
identification of w2 (Keeney and Raiffa, 1993). 



The weighting method



Optimization

3. Some optimization methods
a) Genetic algorithms

This "evolutionary" type of optimization method is 
appropriate for non-smooth objective functions. 
The method is inspired from the reproduction 
process in biology. This method is designed to 
optimize an objective function f for which we do 
not know its analytic expression but, given input θ
=(θ1, θ2,..., θk), the value f(θ) can be found. 



Optimization

b). Stochastic approximation (Robbins and Monro, 1951)

This method is designed to optimize an unknown 
function f(θ) when , for specified θ, the value f(θ) 
can be provided. This can be done by asking 
experts from MIIS. 

Problem: Find a minimum point,           , of a real-
valued function f(θ), called the "loss function," 
that is observed in the presence of noise. 

pR∈*θ



Optimization

(1) Finite Difference: The iterative procedure is 
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y(θ): the observation of f(θ),
ei:      a vector with a 1 in the ith place, and 0 elsewhere,
ck:     goes to 0 at a rate neither too fast nor too slow.
Initialize    , calculate           and     , …, continue this process 
till      converges to     , which is our optimization solution.
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Optimization
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Optimize f(θ)=(Xθ-C)’(Xθ-C)+ε with Finite Difference
procedure,we get the result as follows: 

Example: Let

=[1.1823 4.1721 -2.5319 -1.0656 3.3252 0.5283]’
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]0.6524   3.3395  1.0799-   2.6528-  4.1257   1667.1[ ′

It is close to the result of the case where the 
observations are not influenced by noise:



Optimization
(2) Simultaneous Perturbation Stochastic Approximation
(SPSA) with Injected Noise (Maryak and Chin, 2001):to 

obtain global minimum.
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ak,ck,qk:goes to 0 at a rate neither too fast nor too slow;

y(.):       the observation of f(.);
∆k:        distributed as Bernoulli (±1);
wk:        i.i.d. in Nk (0,1).



Optimization of mockup math 
model using simulated annealing



RankingRanking

• Rank solutions X = (X1, X2… Xk) obtained via 
optimization to find the most "efficient" one (Multi-
criteria decision making, with the mitigating variables 
θ1,θ2...θk as criteria ).

• Goal: define a total order between alternatives, i.e. 
define a map ϕ:ℜk →ℜ, so that alternative X is 
preferred to alternative Y if  ϕ(Y )≤ ϕ(X).

• The total order should reflect the degrees of 
importance of each criterion θi in its contribution to 
the "total score" ϕ(X).



RankingRanking
• In our ranking problem, the criteria are interactive, 

e.g. mitigating variables can contribute to damage 
reduction in combinations.

• Non-linear aggregation operators are proved more 
efficient in such situation than linear ones but may be 
computationally prohibitive.

• Approximation can be done with a linear aggregation 
operator based on simple analysis of interaction 
between criteria.



RankingRanking
1. Ranking with AHP
• Linear aggregation operator based on simple analysis 

of interaction between criteria, namely, pair-wise 
comparisons. 

• Uses fuzzy logic to extract degrees of importance 
between pairs of criteria, and conducts a synthesis of 
priorities leading to a weighted average operator.

• Can handle linguistic (qualitative) values of 
allocations.



RankingRanking
2. Ranking with Choquet Integral
• Non-linear aggregation operator (more general and   

axiomatically justified).
Description of Discrete Choquet Integral: 
    Denote ),,,( 21 kcccT L=  to be the set of k criteria,  
                ),,,( 21 kxxxx L=  to be the evaluations on the subject x.  

    A fuzzy measure on power set 2T satisfies   
a. 1)(,0)0( == Tµµ  and, 
b. BA⊆  implies )()( BA µµ ≤  for ., TBA ⊆  

Discrete Choquet integral with respect to the fuzzy measure is given by 

∑
=

−−=
k

i
iii AxxxC

1
)()1()( )()()( µµ  

with 0)0( =x , and },,{ )()()( kii ccA L= , where ),,( )()1( kxx L  is ranked ),,( 1 kxx L  in 

increasing order, },,{ )()( ki cc L  is the subset of criteria corresponding to },,{ )()( ki xx L  



Ranking
Example: Rank ten 5-component consequence vectors, with the fuzzy 
measure µ=[ 0.07 0.07 0.07 0.27 0.27 0.35 0.37 0.37 0.37 0.37 0.47 0.47  
0.55 0.47 0.59 0.27 0.27 0.27 0.29 0.29 0.39 0.39 0.39 0.57 0.57 0.63 0.63 
0.65 0.75 0.75]:

Consequence 
vectors

Choquet integrals Rank Consequenc
e vectors

Choquet integrals Rank

(14,1,1,1,1) 6.33 2 (13,1,1,1,2) 6.29 3

(11,2,1,1,2) 5.59 7 (15,1,1,1,1) 6.74 1

(13,2,1,1,1) 6.14 4 (10,3,1,1,2) 5.40 8

(9,1,1,1,4) 5.39 9 (12,3,1,1,1) 5.95 5

(11,1,1,1,3) 5.84 6 (6,2,1,1,5) 4.64 10



Ranking

3. Identification of fuzzy measures
Fuzzy measures have to satisfy the monotone constraints.
Two methods to identify fuzzy measures µ:
i)  Supervised learning

a) Quadratic programming
b) Neural network

ii) Unsupervised learning (Method of Entropy) 
Viewing criteria as a random vector, and allocations as 
random sample. Estimating all joint partial density 
functions. Using entropies of subsets of criteria as 
fuzzy measure value.



Ranking
a. Identification of fuzzy measures with quadratic 

programming
For the following data

x1 =(1 1 .9 .7 .5)  x2 =(.3 .1 1 .9 .6)  x3 =(.5 .7 .3 .5 .9)
x4 =(1 .5 .4 .1 .5)  x5 =(.8 .6 .8 .8 .7)  x6 =(.4 .0 .2 .7 .9)
x7 =(.9 .8 .9 1 .3)  x8 =(.5 1 1 .5 .1)  x9 =(.7 .9 .8 .2 .7)
Y = (y1, y2,…,y9) =(.7 .6 .5 .3 .8 .5 .7 .5 .4).

By our algorithm, we get
µ = [0.0700 0.0700 0.0700 0.2700 0.2700

0.3500 0.3700 0.3700 0.3700 0.3700
0.4700 0.4700 0.5500 0.4700 0.5900
0.2700 0.2700 0.2700 0.2900 0.2900
0.3900 0.3900 0.3900 0.5700 0.5700
0.6300 0.6300 0.6500 0.7500 0.7500]

The corresponding quadratic error is 0.0084.



Ranking
b. Identification of fuzzy measures with neural networks

Fuzzy measures are set up as weights of a feed forward neural 
network, which are found by training the network with back-
propagation algorithm. (Wang and Wang, 1997).



Ranking
Example: identification of fuzzy measures with neural networks

Sample Feature 1 Feature 2 Feature 3 Evaluation 
1 0.56 0.78 0.92 0.742984 
2 0.05 0.36 0.18 0.143036 
3 0.97 0.95 0.84 0.881246 
4 0.00 0.62 0.06 0.090632 
5 0.22 0.15 0.00 0.064790 
6 1.00 0.75 0.33 0.522212 
7 0.49 0.55 0.76 0.608632 
8 0.89 0.37 0.97 0.794288 
9 0.64 0.59 1.00 0.771720 
10 0.11 0.00 0.03 0.038632 

 
Our network produces the following fuzzy measure: µ{}= 0, µ{1}= 0.2, 
µ{2}= 0.1, µ{1,2}=0.3386, µ{3}= 0.399, µ{1,3}= 0.7544, µ{2,3}= 0.5772 
µ{1,2,3}=1, which satisfies the monotone constraints. 
 



Conclusions and Future Work

• Data structure
• Experts and decision-makers’ assistance
• Optimization methods
• Ranking procedures
• Some other issues
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