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The Inverse Problem
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Atmospheric transport and 
dispersion model

Known release Predicted 
observations?

Actual 
observations

Release location, 
magnitude, time?

Inverse model

C. Wunsch, The Ocean Circulation Inverse Problem, Cambridge University Press,1996:

“An inverse problem, is one that is the inverse to a corresponding forward or direct one, 
interchanging the roles of at least some of the knowns and unknowns”.

Fundamental aspect: the quantitative combination of theory and observation



Adjoint Models
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Numerical tools which provide the quantitative combination 
of theory and observations needed for the inverse modeling 
of physical systems.

Adjoint model applications:
Data assimilation: optimize model-to-data fit

Model tuning: optimize model equations

Sensitivity analysis: propagation of anomalies



What We’re Doing
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Program components

HPAC/SCIPUFF
Automatic

differentiation
tools

Dipole Pride 26

Developing the adjoint model for a state-of-the-art 
atmospheric transport and dispersion model to characterize 
the source of a hazardous material release using stand-off 
detection data.

forward model
(theory)

adjoint model
(theory-observations)

field data
(observations)



Automatic Differentiation
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Adjoint and tangent-linear models are developed directly from 
the numerical code for the dynamical model.
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Second-order Closure Integrated Puff (SCIPUFF)

10/31/2005 Aerodyne Research, Inc. 6

Features
Lagrangian Gaussian puff model.
Ensemble-average dispersion and a measure of the 
concentration field variability.
Second-order turbulence closure techniques

Relates dispersion rates to turbulent velocity statistics
Predicts statistical variance in the concentration field

Complete moment-tensor description
Wind shear distortion
Puff splitting algorithm and multi-grid adaptive merging algorithm

Adaptive time stepping scheme

Sykes, R.I., W.S. Lewellen, and S.F. Parker, “A Gaussian Plume Model of Atmospheric 
Dispersion Based on Second-Order Closure”, J. Clim. Appl. Met., 25, 322-331, 1986.



SCIPUFF Adjoint & Tangent-Linear Models
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Incident
Single source, instantaneous

Control variables
Single source latitude & longitude
Mass
Release time

Dynamics
Single puff
Centroid evolution
Turbulent diffusion
Buoyancy

Required code
File handling and data I/O
Meteorology routines
Materials

Utility code
Drivers
Newton-Krylov minimization

Not included
Puff splitting
Adaptive time stepping

SCIPUFF
SCIPUFF 

preprocessed
SCIPUFF adjoint & 

tangent-linear

Gradient 
testing

Testing & 
validation

C preprocessing TAF processing

Field tests

Finite difference



Dipole Pride 26 (DP26) Field Tests
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Defense Special Weapons Agency (DSWA) 
Transport and Dispersion Model Validation 
Program Phase II

To acquire data for the validation of integrated 
mesoscale wind field and dispersion model, in 
particular the HPAC model suite.
Conducted at Yucca Flat on the Nevada Test Site.
SF6 tracer gas release with downwind tracer 
sampling at distances ranging to 20 km, along with 
extensive meteorological measurements.
Lateral and along-wind puff dispersion obtained 
from tracer concentration measurements.

C.A. Biltoft, “Dipole Pride 26: Phase II of Defense Special Weapons Agency Transport and Dispersion 
Model Validation,” DPG-FR-97-058, Dugway Proving Ground, Dugway UT, July, 1998.



DP26 Test Site and Facilities
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Yucca Flat test site
North-south oriented basin
30 km long and 12 km wide.
Yucca Lake (1195 m above 
mean sea level (MSL) is lowest 
point and the basin slopes 
upward to the north.
Basin surrounded by mountains: 
1500 m (east) to 1800 m 
(west/north) MSL).

Facilities
MEDA: network of 
meteorological data stations.
BJY: Buster-Jangle intersection.

Whole air samplers
Three sampling lines; 30 
samplers per line; 12 bags per 
sampler – 15 minute resolution.
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SCIPUFF Adjoint - Application to DP26

Fixed puff width, fixed wind - not discussed
Fixed wind

Controls – release latitude and longitude
Samplers – along a given sampling line with 
concentrations > 90% of the peak concentration.

Variable wind field
Controls – release latitude and longitude
Samplers – along a given sampling line with 
concentrations > 10% of the peak concentration.

Variable wind field, release time - not discussed
Controls – release latitude, longitude, and (manual)
time.
Samplers – a given sampling line with conc’ns > 0.



Fixed Wind Adjoint Model
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One estimated release location for each sampling line.
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Fixed Wind Adjoint Model
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Cost Function: Fixed Wind DP26 Trial 11B – Line 2
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SCIPUFF (Fixed Wind) Adjoint Summary
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Fixed Versus Variable Wind Adjoint
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Variable Wind Adjoint
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Future Work, Broad research objectives 

10/31/2005 Aerodyne Research, Inc. 17

More fully develop theoretical and numerical 
foundation for source location approaches, 
using adjoint model with ‘ideal’ observable data 

observational data requirements
sensor spatial resolution
the impact of faulty observational data
atmospheric transport and dispersion spatial range 

Incorporate measurement and model 
uncertainties
Testing and validation using actual field data to 
ensure reliability and fully assess performance.



Future Work, Three year effort 
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First year: extend SCIPUFF adjoint to enable 
source location using ideal observational data.  
Second year: incorporate measurement
uncertainties, begin testing using field data.  
Third year: treat model uncertainties and 
continue testing and validation using field data.  
Successful completion: numerical code, tested 
against field data,

implements adjoint-based strategies 
locates hazardous release using observational data
includes estimated uncertainties in predictions



First Year Work
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Focus on adjoint model development 
extend the SCIPUFF adjoint model for source 
location applications 
use ideal or model simulated observational data

Apply adjoint model to ‘ideal’ observable data to 
be address:

observational data requirements,
sensor spatial resolution, 
the impact of faulty observational data
atmospheric transport and dispersion spatial range. 

Compare approaches for applying adjoint
models in source location applications.  
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Transformation of Algorithms in Fortran (TAF)

10/31/2005 Aerodyne Research, Inc. 22

Commercial source code – to – source code translator
Giering, Ralf and Kaminski, Thomas, Transformation of 
Algorithms in Fortran, TAF Version 1.5, FastOpt, 
http://www.FastOpt.com, July 3, 2003. 

Features
Tangent-linear and adjoint models - 1st derivatives.
Hessian code - 2nd derivatives.

Estimating the Circulation and Climate of the Oceans 
(ECCO)

Large data assimilation effort by MIT, SCRIPPS, 
NASA\JPL, and international collaborators: 
http://www.ecco-group.org.
Based on the MIT GCM (global, 3-dimensional NS 
solver): http://www.mitgcm.org.
~100,000 lines of code; ~108 control variables.
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