

Development of an Evaporation Model for HD on Non-Porous Surfaces

By:

Brad Dooley
California Institute of Technology
Pasadena, California

H. K. Navaz Kettering University Flint, Michigan

- To develop a simple engineering tool that can predict the evaporation rate of HD on non-porous surfaces and provide information about
 - The amount of mass being evaporated and transported by the wind
 - The amount of mass being absorbed/desorbed into a porous substrate
 - The basic behavior of a drop under the outdoor conditions

- > Evaporation
 - Modeling sessile drop behavior
- Validation
- > Generalization
 - How to generalize our efforts to enhance prediction capability by
 - ✓A hybrid approach
 - ✓ Imposing outdoor conditions
- Linkage to porous substrate

Evaporation Module

- A module that is mostly based on first principles and provides the following information
 - Forcing function the evaporation rate, m
 ✓ Can be modified, improved, replaced, ...
 - Topology of the droplet by solving a differential equation using the forcing function
 - Evaporated mass being added to the atmospheric air
 - Remaining mass to be transported through the porous substrate

Evaporation Module (cont'd) Model Development

- Forcing Function
 - Constant base area for a drop (Model A)

$$\dot{m} = 2\pi C R_s f \frac{\mu}{m} \left(F + C_1 R e^m r^n \right) \ell n \left(1 + B \right) = 2\pi C R_s \frac{\mu}{m} \left(F + C_1 R e^m r^n \right) \ell n \left(1 + B_M \right)$$

$$C = \frac{h}{R}$$

Shrinking base area for a drop (Model B)

$$\dot{m} = 2\pi R_s (1 - \varphi) f \frac{\mu}{m} (F + C_1 Re^m r^n) \ell n (1 + B) \quad or$$

$$\dot{m} = 2\pi R_s (1 - \varphi) f \frac{\mu}{m} (F + C_1 Re^m r^n) \ell n (1 + B_M)$$

➤Interaction among drops – Group Theory

■ Model 1:
$$G_{evap} = \frac{1}{1 + G_c}$$
 with $G_c = \frac{C(F + C_1 \quad {}^m \quad {}^n)}{C(F + C_1 \quad {}^m \quad {}^n)} \quad N^q(\frac{r}{\lambda})$

Where C and q can be determined experimentally. C=3 and q=2/3

Model 2:

$$G_c = \sum_{n=0}^{\infty} \frac{(-1)^n \quad \eta_0}{[(n+1)\eta_0]}$$
Where $\eta_0 = \frac{-1}{R}$ and 2λ represents the distance between two drops

$$\lambda = \frac{1}{2N^p}$$
where N is the number of drops and $p = \frac{1}{3}$

$$G_{evap} = \begin{cases} G_c^q & \text{for } N \ge n \\ \frac{1}{q} G_c^q & \text{for } N < n \end{cases}$$

Evaporation Module (cont'd) Model Development

- \triangleright (\dot{m} is a function of time also)
- Model A

$$\frac{dh}{dt} = \frac{-\dot{m}}{\pi \rho_{\ell} h^{2} \left(\frac{3}{C} - 1\right)}$$

$$h/R = C$$

Model B

$$\frac{dh}{dt} = \frac{-\dot{m}}{\rho_{\ell} \frac{\pi}{2} (r^2 + h^2)}$$

- Validate Model
- Create a matrix for the entire possible domain of operation
- Fill the matrix using the analytical model
- > Use neural network curve-fit
- Create a simple engineering equation for application

Evaporation Module (cont'd) Validation

HD on Glass, Wind Velocity = 1.77 m/s, Drop Size = 1 μ L Air Temperature = 35°C, m=1.180 mg

HD on Glass, Wind Velocity = 0.26 m/s, Drop Size = 1 μ L Air Temperature = 35°C, m=1.192 mg

HD on Glass, Wind Velocity = 0.26 m/s, Drop Size = 1 μ L Air Temperature = 35 $^{\circ}$ C, m=1.184 mg

HD on Glass, Wind Velocity =0.26 m/s, Drop Size = 1 μ L Air Temperature = 35°C, m=1.204 mg

Evaporation Module (cont'd) HD on Non-Porous Surface

HD on Glass, Wind Velocity = 3.66 m/s, D rop Size = 1 μ L Air Temperature = 15°C, m=1.200mg

HD on Glass, Wind Velocity = 1.77 m/s, Drop Size = $6 \mu L$ Air Temperature = $35^{\circ}C$, m=6.884 mg

HD on Glass, Wind Velocity = 3.66 m/s, Drop Size = 1 μ L Air Temperature = 15°C, m=1.264 mg

HD on Glass, Wind Velocity = 1.77 m/s, Drop Size = 6 μL Air Temperature = 35°C, m=7.000mg

Evaporation Module (cont'd) HD on Non-Porous Surface

HD on Glass, Wind Velocity = 1.77 m/s, Drop Size = 6 μ L Air Temperature = 35°C, m=7.244 mg

HD on Glass, Wind Velocity = 1.77 m/s, Drop Size = 6 μ L Air Temperature = 35°C, m=7.022 mg

HD on Glass, Wind Velocity = 1.77m/s, Drop Size = 6 μ L Air Temperature = 35°C, m=7.364 mg

HD on Glass, Wind Velocity = 1.77 m/s, Drop Size = 9 μ L Air Temperature = 35°C, m=12.033 mg

Evaporation Module (cont'd) - HD on Non-Porous Surface - Droplet Topology

Sample animated droplet topology

CHIMICAL AND BIOLOGICAL DELICATION

Evaporation Module (cont'd)

HD on a Non-Porous Surface – Group

Theory

- > There are two group models embedded in the code
 - Negligible for small sparse drops
 - More significant for larger and denser drops

Evaporation Module (cont'd) Model Generalization

			1	2	3	4	5	6	7	8	9	10	11	12	C 13	14	15	16	17	18	19	20	21	22	23	24	25
			1		T _{air} =15°C		J	0	1	T _{air} =25°C		10	- 11		T _{air} =35°C	14	10	10	- 17	T _{air} =50°C		20	21	22	T _{air} =55°C		23
			T _{air} = 15 € T _{drop} (°C), mean value			T _{air} =25 € T _{drop} (°C), mean value							T _{drop} (°C), mean value														
			47 1					47					47		(°C), mean v			47				1	47		(°C), mean	value	
Droplet Volume=		u*(m/s) 0.0285	17	25	35	50	55	17	25	35	50	55	17	25	35	50	55	17	25	35	50	55	17	25	35	50	55
	Number of	0.1038																									
	drops per 1m ² = 3600	0.1796																									
	1111 = 3000	0.1534																									
	Number of	0.0285 0.1038																								igwdown	
	drops per	0.1036																								\vdash	
	1m ² = 6400	0.1534																									
	Number of	0.0285													Expeiment												
	drops per		Experiment												Experiment						Environt					<u> </u>	
	1m²= 10000	0.1796 0.1534	Experiment						Experiment												Experiment					\vdash	
	Number of	0.0285							Exponition																		
	drops per	0.1038													Experiment												
	1m ² = 3600	0.1796 0.1534																								igsquare	
Donalet		0.1554					1								Experiment						1	1			1	igwdot	
Droplet	Number of		Experiment												Experiment						Experiment						
volume=	drops per 1m ² = 6400	0.1796																									
OμL		0.1534													Experiment												
	Number of	0.0285 0.1038													Experiment											\vdash	
	drops per	0.1036													Experiment											\vdash	
	1m ² = 10000	0.1534																									
Droplet Volume= 9 _{//} L	Number of	0.0285																									
	drops per	0.1038 0.1796													Experiment											<u> </u>	
	1m ² = 3600	0.1790	Experiment																			Experiment				\vdash	Experiment
	Number of	0.0285	Буропполи																			Exportment					Буропполс
	drops per	0.1038																									
	1m ² = 6400	0.1796																								igsquare	
		0.1534 0.0285																								igwdapprox	
	Number of	0.1038																								\vdash	
	drops per 1m ² = 10000	0.1796																									
	1111 = 10000	0.1534																									

Evaporation Module (cont'd) HD on a Non-Porous Surface – Parametric Studies

Effect of Velocity and Air Temperature on Evaporation

- All the scenarios presented in the matrix will be connected by two methods:
 - Classical curve-fit
 - √To have a simple engineering tool
 - ■Neural network
 - √To have a more sophisticated tool with prediction capabilities

Evaporation Module (cont'd)

Model Generalization

Caltech Work: Overview

Motivating hypothesis (Navaz): The relevant velocity scale for fluid evaporation rate is not the freestream speed (U_{∞}) , but the "friction velocity"

$$u_{\tau} = \sqrt{\frac{\tau_{w}}{\rho}}$$

- > Variation of τ_w (and thus friction velocity) for given free stream speed demonstrated
- Simple case of drop evaporation rate evaluated experimentally
- Variation in evaporation rate with friction velocity observed
- Future experiments

John W. Lucas Adaptive Wall Wind Tunnel (GALCIT)

- > Turbulence generators (may be) placed in rack upstream of ground plane to increase freestream turbulence level.
- Boundary layer properties examined on ground plane at specified distance from leading edge.

Free Stream Turbulence Generation

- Bungee cords stretched within frame in free stream.
- Act as turbulence generator; also vibrate quite a bit at high speeds.
- Various configurations available to "dial in" turbulence level.
- Idea: Bahram Valiferdowsi

Wall Shear Stress Measurement

- Oil film technique used by Nagib and others.
- Relatively nonintrusive - camera and lamp placed in tunnel, but near test section roof.
- By observing interference fringes growing with time, wall shear stress may be calculated.

Shear Stress Measurement Apparatus

Wall Shear Stress Measurements

- Numerous images taken at 10-30 sec intervals.
- Fringe spacing growth rate, ds/dt, easy to evaluate.

$$\tau_{w} = \frac{2n\mu}{\lambda} \frac{ds}{dt}$$

 \triangleright n= oil index of refraction; $\mu=$ dynamic viscosity; $\lambda=$ light wavelength.

Wall Shear Stress Variation with Free Stream Turbulence

	Tu	rbulence Lev	vel
Speed (mph)	0.3-0.4%	~2.6%	4.1-5.4%
11.3	0.0626	0.0663	0.0723
22	0.2048	0.2102	0.2483
33	0.4096	0.4450	0.5115

- \triangleright Wall shear stress (τ_w) given above in Pa.
- \triangleright Notable increase in τ_w as turbulence level increases.
- Pata at 1% turbulence level showed slight decrease in τ_w ; calibration drift of pitotstatic pressure transducer suspected.

Free Stream Turbulence Intensity Affecting $\tau_{\rm w}$ - Plot

Boundary Layer Profile Measurement

- 22-element boundary layer rake used to measure dynamic pressures at select heights
- Static pressure taken from nearby pitot-static tube

Boundary Layer Profile Comparison - ~0.4% vs. 5% free Stream Turbulence

- Both profiles follow Clauser turbulent boundary layer profile; shape changes slightly near free stream transition
- \triangleright In no case is laminar sub-layer accessible (y+<5).

Profile Shape Change with Free Stream Turbulence Level

- At the same freestream speed, the shape of the boundary layer visibly varies with added freestream turbulence T.
- The higher T curve "stays high" lower, requiring a more abrupt reduction to zero.
- This agrees with the observed higher shear stress at the wall.

Critical Parameter for Evaporation: Wall Shear?

- It is hypothesized (Navaz) that evaporation rate of liquid droplets is based on the friction velocity (u_{τ}) rather than the free stream speed (U_{∞}) .
- \triangleright Current experiments demonstrate that for a constant U_{∞} , τ_{w} may be increased by up to 25% by imposing 5% turbulence intensity on the free stream flow.
- \gt 25% increase in $\tau_{\rm w}$ -> 12% increase in u_{τ} .
- Change in evaporation rate by up to 20% thus expected by model.

Relative Sizes: 1 µL Droplet and Laminar Sub-Layer

- 10 mph free stream and low turbulence level, present BL experiments
- Laminar sub-layer thickness (y+ = 5) is ~ 0.3 mm
- > 1 μ L droplet has height h of \sim 0.2 mm (Navaz)
- Droplet lies entirely within laminar sub-layer, where friction velocity u_τ is the dominant flow parameter (and only velocity scale!).

Proof-of-Concept Experiment

- ➤ Evaporation rate of 2.5 ml water drop in 10 mph free stream examined at turbulence intensity levels of 0.4% and 5%.
- Droplet dispensed on glass, video camera observes evaporation.
- Ensembles for each case taken, mean evaporation time recorded.

Droplet Evaporation Experiment

Turbulence intensity level (%)	0.4	5
Friction velocity (m/s)	0.23	0.25
Mean drop evaporation time (sec)	900	850

Upcoming Work at Caltech

- > Evaporation rate measurement
 - Instantaneous rate measurement
 - More accurate optical techniques
 - Mass measurement (microbalance?)
- Still higher turbulence intensity levels
- Further collaboration/verification with numerical model of H. Navaz
- Different surfaces (concrete, etc.)

Evaporation Module Link to the Porous Surface

- Simultaneous process present with evaporation
 - Capillary diffusion
 - Secondary evaporation
 - Vapor entrapment
 - Adsorption

Liquid simulants established a finite network in a porous domain (Czech concrete)

Porous Media/Substrate Modeling Proposed Approach

- Modeling effort
 - Solve the governing equation by capillary network model (CNM)
- Verification effort
- Generating the Design of Experiment matrix
- Obtaining solution for the entire matrix
- Curve fitting
 - Classical
 - Neural Network

Porous Media/Substrate Modeling Adding Adsorption Model

- Add adsorption model to the porous substrate model
- > Ensure robustness of the algorithm
- ➤ Validate model by
 - Conducting laboratory tests
- Verify the model
 - Laboratory
 - Outdoor

Conclusion

- Developed an evaporation model
- Verified the model with experimental data
- Extended the domain of applicability by using a hybrid analytical/experimental method
- Developed a framework for tackling a more complex problem – HD on porous substrate
- Resolving wind/turbulence/shear stress issues
- Incorporating the effects of wind turbulence intensity on evaporation

Evaporation Rate Validation

Evaporation of HD on Glass. 25 Drops/25 cm² Each Drop = 1 μ L - Wind Velocity = 5.8 ft/s

