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Project Goals
• Adapt an aerosolization model

– Model must run rapidly
– Code must be fairly “easy” to implement
– Algorithms must handle streams with multiple 

components
– Algorithm must be easily integrated with the EMIS 

(Emission Model for Industrial Sources) tool
– Algorithm output must meet requirements for model input 

to AT&D (i.e., ChemCODE and SLAM)
• Couple STACK model with EMIS

• Formulate output compatible with existing 
software suite



The “Problem”

• Current model treats all emissions as gas phase

• Most OPs will condense to at least some extent at 
ambient conditions

• A TIC may condense at the stack and some may 
never even ‘see’ the transport and dispersion 
model!

• Result: overestimates downwind hazard prediction



The “Problem”
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Methodology: Governing Equations

• Change in number of monomer 
molecules…rate of formation of 

particles of interest
• Nucleation = f(supersaturation ratio,

surface tension, etc.)
• Critical nucleus size = point at which 

particles are stable (Gibbs)
• Coagulation = f(Knudsen, 

supersaturation ratio, flow regime)
• Flocculation = f(Number of 

particles, Knudsen)
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Methodology:  
Theoretical Model Assumptions/Limitations

• Single condensing component

• Ideal carrier density

• Neglects wall losses

• Produces an average particle diameter (monodisperse)

• Assumes no pair interaction potential between molecules 
during flocculation 



The Stack Model
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Methodology:  Integration of STACK in EMIS 

User selection
of stack 

properties

Physical properties
sort and 

comparison

Compound for
condensation 

is selected

Physical property and
stack data passed

to STACK algorithm

EMIS Output: 
process stream and

thermodynamic information

LSODE run on
model produces 
new nm and dp



Results: TEPO Particle Size

Average Particle Diameter (ci=300 ppm)
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Example:  Parameters
• Compound:                   TEPO (Triethyl Phosphate)
• Carrier Gas:                  Air
• Boiling point:                 419°F
• Stack height:                 20 m
• Stack diameter:             0.3 m
• Effluent Temperature:   404°F
• Outlet Temperature:      350°F



Results: Threshold Nucleation

Threshold Inlet Concentration for Nucleation (T=414oF)
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Example:  Parameters
•Compound:                   TEPO (Triethyl Phosphate)
•Carrier Gas:                  Air
•Boiling point:                 419°F
•Stack height:                 20 m
•Stack diameter:             0.3 m
•Temperature:                414°F

WHO CARES?!



Results: Example T&D Runs
TEPO concentration:

picograms/m3

TEPO concentration:

picograms/m3

Gas Phase 
SLAM Run

Particulate (dp= 5µm)
SLAM Run

8 hour release starting at noon local time: 1 kg/hr



Model Sensitivity: Analysis, nm
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Model Sensitivity: Analysis, dp
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Model Sensitivity: Physical Property Estimation

• Experimental and literature values

• ChemCAD physical property data 
and thermodynamic information 

• Molecular surface area and volume 
estimated using molecular 
modeling tools (e.g. HyperChem, 
Gaussian)

• Physical property estimations (i.e., 
gamma from bulk stream viscosity)

• “SWAG”



The Solution

Point Sources

Fugitive Emissions

Gas Phase T&D

EMIS

Met
Data

Source
Term

T&D 
Model

Atmospheric
Chem
Model

Downwind Hazard 
Prediction

STACK

Monomer
concentration

Aerosol
PSD

Point Sources

Fugitive Emissions

Gas Phase T&D

EMIS

Met
Data

Source
Term

T&D 
Model

Atmospheric
Chem
Model

Downwind Hazard 
Prediction

STACK

Monomer
concentration

Aerosol
PSD



Future Work
• Incorporate particle size distribution
• Improve handling of multicomponent

effects
• Model verification and validation

– Literature
– Field study data
– Experimental data

• Incorporate mixing effects outside the 
STACK
– Plume rise
– CFD modeling



Questions?


