

Agent Fate Program Overview

Dr. James Savage RDECOM/ECBC (410) 436-2429 James.savage@us.army.mil

26 October 2005

What Is The Objective Of The Agent Fate Program?

Improve model predictions of agent persistence

Objectives:

 Measure and understand the physico-chemical processes of CW agents on surfaces in order to predict their persistence and fate in operational scenarios via agent fate models

Payoffs:

- Support research and acquisition decisions of all capability areas: detection, protection, decontamination
- Support and improve Operational Risk Management decisions based on inhalation and contact hazard
- JFOC Battle Management: Battlespace Analysis and Planning
- Augments operational and mission area analysis tools such as Joint Effects Model (JEM) and Joint Operational Effects Federation (JOEF)

Role of CB Hazard Models In ChemBio Defense Program

Decon S&T Acquisition VLSTRACK HPAC JEM D2PUFF Detection Protection Operations

CW Battlespace Mgmt

Why Do We Need An Agent Fate Program?

Models give varying and inaccurate persistence predictions

Field manuals and models built from limited data sets & questionable data

Model Prediction Improvement By Agent Fate Program

Current State of Agent Fate Data

Less than 400 usable live agent fate experiments exist

- Deficiencies of Existing Data Points:
 - Sparse —
 - No coordination between tests
 - Limited test duration
 - No repeatability
 - Missing data
 - Illegible source material
 - Antiquated test equipment
 - Significance versus quantification testing

	Temp	Surface						
Agent	(°C)	Grass	Sand	Soil	Concrete	Asph		
А	≤ 0	no data	no data	no data	no data	no da		
	≤ 15	no data	no data	no data	no data	no da		
	≤ 30	8	9	no data	2	2		
	> 30	no data	6	no data	2	2		
в	≤ 0	no data	1	no data	1	no da		
	<u>≤</u> 15	no data	no data	no data	no data	no da		
	≤ 30	7	10	no data	2	2		
	> 30	no data	6	no data	2	2		
	≤ 0	no data	no data	no data	no data	no da		
С	<u>≤</u> 15	no data	1	no data no data		no da		
C	≤ 30	16	4	38	1	1		
	> 30	1	3	no data	no data	no da		
D	≤ 0	no data	no data	no data	no data	no da		
	<u>≤</u> 15	no data	no data no dat		no data	no da		
D	≤ 30	no data	5	no data	no data	no da		
	> 30	no data	2	no data	no data	no da		
	≤ 0	no data	3	no data	no data	no da		
Е	<u>≤</u> 15	no data	1	no data	no data	no da		
-	≤ 30	4	49	64	5	1		
	> 30	1	23	4	no data	no da		
	≤ 0	no data	no data	no data	16	no da		
F	<u>≤</u> 15	2	no data	no data	9	1		
	≤ 30	9	1	4	57	2		
	> 30	no data	no data	no data	4	no da		

Agent Fate Program will start to fill the holes in this matrix (Comprehensive, systematic, and integrated program)

Agent Fate Concept And Approach

Wind Tunnel

Testing Matrix

Priorities: 1. non-absorptive, non-reactive 2. absorptive, non-reactive

- 3. non-absorptive, reactive
- 4. absorptive, reactive

<u>Agents</u>	<u>Substrates</u>	<u>Test Matrix</u>
HD	Glass ^{1,2} /Teflon ¹	Velocity @5mm: 0.2, 1.6, 3.3 m/s
VX	Concrete ⁴	Drop Size: 0.0005, 0.2, 9.0 μL
GD	Asphalt ⁴	Temperature: 0/20, 25, 55 deg. C
NTA	Grass ²	RH: 5 to 90%
Thickened VX	Sand ² /Clay ²	
Thickened GD		

Atmospheric Surface Layer

AGENTFATE

Agent Fate Wind Tunnels (to the same scale)

Scale Independence of Agent Fate Wind Tunnels

- No scaling corrections are required between the various sizes of
- wind tunnels used in the Agent Fate Program. Since the <u>tunnels</u>
- <u>all possess the same velocity profiles</u> (based on realistic wind conditions), the <u>agent/substrate combinations</u> being tested <u>experience the same air flow</u> and evaporation environment.
 - Accordingly, identical data should be obtained for identical agents/substrates tested in any of the tunnels. This finding allows the results from the tunnels to be directly compared and also eliminates the need to perform duplicate tests in the different

- Based on assessment by:

Dr. Klewicki, University of Utah Recognized expert in theoretical and experimental atmospheric boundary

5 x 5-cm Wind Tunnel Operational Arrangement

5-cm Wind Tunnels

Sub-ambient ECBC windtunnel

Persistence Estimates HD On Concrete/Sand Vapor Hazard

Open Air Field Trials Improved Test Pad

- Track-driven system to regulate dissemination device speed
- New concrete pad
- New sampling mast, arms, and sampling hardware/equipment

Open Air Field Trials Agent Dissemination Device

- 2005 Objectives were to minimize:
 - Variance in circumferental deposition density
 - Variance in annular deposition density (more uniform density)
 - Droplet overlap and droplet size distribution
- Objectives met with new dissemination device (goose)
- New goose performance allows for more accurate
 - Mass balance
 - Determination of evaporation rate

Results: Degradation of HD* on Ambient Substrates

- Limestone:
- Asphalt:
- Sand:
- Mortars:
- Concrete:

No reaction in 7 months No reaction in 2 months No reaction in 7 months Half-lives of weeks to years. Half-lives of weeks to years.

HD* and Water on Asphalt, Sand & Limestone

- The sulfonium ion H-2TG (toxic) was the major product, >75%.
- An alcohol thiodiglycol (non-toxic) and/or chlorohydrin was also formed.
- Half-lives: ~1 month for asphalt and limestone, 1-2 weeks for sand.

HD* and Water on Concrete

- The product distribution varied from sample to sample.
 - The sulfonium ion H-2TG (toxic) was a minor product, 0-30%.
 - 2-chloroethyl vinyl sulfide, minor product, 10–15%
 - Thiodiglycol (non-toxic) was also formed, 5 25%.
 - Product tentatively identified as 1,4-oxathiane, ~30%
 - Unknown at 65.5 ppm, 25-50%
- Half-lives: 3 9 days for wet concrete and mortar samples.
- Non-toxic products in green; toxic in red.

Comparison of HD* on ambient concrete ("dry") and with added water ("wet").

The same products were formed; water decreased the half-life from months to days.

Soil System Unit

General Schematic

References

USEPA. 1987. Soil-Core Microcosm Test. Fed. Reg. 52, 36363-36371.

- Checkai, R.T., Wentsel, R.S., Phillips, C.T., Yon, R.L. 1993. Controlled Environment Soil-Core Microcosm Unit for Investigating Fate, Migration, and Transformation of Chemicals in Soils. J. Soil Contam. 2(3):229-243.
- USEPA. 1996. Ecological Effects Test Guidelines: Terrestrial Soil-Core Microcosm Test. EPA712–C–96–143. Office of Prevention, Pesticides & Toxic Substances, Washington, DC.

Environmental Analysis of Contaminated Sites. 2002. Sunahara, G., Renoux, A., Thellen, C., Gaudet, C., Pilon, A., Eds. John Wiley & Sons, New York, NY.

Checkai, R.T., et al. 2004. Innovative Methods for Investigating the Fate of Chemical Warfare Agents in Soil. 24th Army Science Conference. Accepted for presentation and publication.

Simulated Rain Event On Soil

Sampling Time (min)

Agent Fate on Soil

Atmospheric concentrations of GD above the soil surface: Monitored until undetectable (Time 0). Very light simulated rain events sufficient to just moisten the soil surface were applied. Rain events displacement of GD from the soil into the atmosphere above the soil. Successive displacement reactions occurred over the course of days in Response to very light simulated rain events.

Agent Application: 80 µl neat GD dropped onto soil surface using gas tight syringe (applied from 1 inch above soil surface). Approximate droplet size 3.6 µl.

Rain Event: Moisture from the Synthetic Rain Generator, (1.6 ml distilled water/event).

GD on Dry Composite Soil

•GD displacement into air remains ≥0.05 mg/m3 (IDLH) after 35 Rain Events
•Light simulated Rain Events were applied after GD conc. in air ≤0.005 mg/m3
•GD persists much longer in complex soil (e.g., sand + clay + humus)

1 nL droplets on a Teflon surface

Optical Results

Agent Drop on Non-Absorbent, Non-Reactive Surface

Evaporation Sequence

Concrete

Cut-away

Agent absorbs rapidly Spreads deep into substrate Follows aggregate Varies with concrete type

Asphalt

Cut-away

Agent absorbs rapidly Spreads wide over substrate Creates tar-like solvate

Decision Aiding Analysis & Tools CHEMRAT

- CHEMRAT initiated by warfighter urgent need request
- Developed and fielded in 3 months
 - Ver 1.0 released in Jan 2003
 - Deployed to OIF
- Interim accredited by DATSD-CBD in April 2003
- Transitioned to JOEF in FY05
- Currently used by USAF, USN, NORTHCOM, DHS, DOE
- Ver 1.5 to be released in 1st quarter FY06
 - Updated data from Agent Fate Program

Decision Aiding Analysis & Tools VLSTRACK Update

- VLSTRACK updated to version 3.1.2
 - Released June 2004
- Updated with Agent Fate Program data
- VLSTRACK is integration test bed for transition of Agent Fate evaporation models to JEM
- New contact hazard and liquid pickup model being added

Decision Aiding Analysis & Tools AFMAN 10-2602 Table Updates

- USAF guidance manuals being updated with revised hazard prediction tables
 - AFMAN 10-2602
 - AFMAN 10-2517
- Estimates derived from updated VLSTRACK predictions
- Incorporates newest agent fate data
- Scheduled release in Dec 2005

			Va	por Hazard VX C	On Concrete EC	: 16			
		Stability Wind Speed (knots)		PSCD	PSCF	PSCD	PSCF	PSCD	PSCF
				2		6		10	
Agent	Release	Munition	Temp °C (°F)	2		O		IV IV	
VX	LowAlt	TBM	-5(23)	0.21	0	0.0	0	0.03	0
VX	High Alt.	TBM	-5(23)	0	0	0.0	0	0	0
VX	Low Alt.	TBM	10 (50)	24.0	16	0.49	0	0.3	0.1
VX	High Alt.	TBM	10 (50)	9	0	0	0	0.1	0.0
VX	LowAlt	TBM	25 (77)	72	72	3.57	15	1.88	0.9
VX	High Alt.	TBM	25 (77)	72	20	4.6	0.43	0.6	0.22
VX	LowAlt	TBM	50 (122)	72	72	56,19	72	45.19	22.19
VX	High Alt.	TBM	50 (122)	72	72	43.19	16	7.8	13.5

Decision Aiding Analysis Revised C-CW CONOPS and TTPs

- Leveraged live agent outdoor tests to quantify and assess detection levels of:
 - CAMs
 - M-22 ACADAs
 - M-8 paper
 - M-256A kits
 - HAPSITE
 - M-279 surface sampler
- Determine droplet spread factors
- Quantify transfer of liquid agent by vehicles
- Determine effectiveness of foot/glove decon procedure

Transitioning CW Agent Fate S&T Into Products For CBDP Users

AGENTFATE

