Applying the Systems Engineering Method for the Joint Capabilities Integration and Development System (JCIDS)

Chris Ryder and Dave Flanigan
27 October 2005

Purpose

- JCIDS prescribes a joint forces approach to identify capability gaps against current force capability needs
- The Systems Engineering (SE) Method applies to each iteration of the systems life-cycle from capability inception through system retirement
- Good systems engineering practice is necessary for successfully implementing JCIDS
- Use of model-driven SE facilitates JCIDS throughout the systems life-cycle

Agenda

- The Joint Capabilities Integration and Development System (JCIDS)
- The Systems Engineering Method
- Model-Driven Systems Engineering for JCIDS
- Why use the Systems Engineering Method JCIDS?

JCIDS Analysis

JCIDS Events

- Functional Area Analysis (FAA)
 - Identify operational task, conditions, and standards needed to accomplish military objectives
 - o Result: Tasks to be accomplished
- Functional Needs Analysis (FNA)
 - Assess ability of current and programmed capabilities to accomplish the tasks
 - o Result: List of capability gaps
- Functional Solutions Analysis (FSA)
 - Operational based assessment of DOTMLPF approaches to solving capability gaps
 - o Result: Potential DOTMLPF approaches to capability gaps
- Post Independent Analysis
 - o Independent analysis of approaches to determine best fit
 - o Result: Initial Capabilities Document

JCIDS

- JCIDS analytical process stresses the fundamentals for applying an effective systems engineering program by any accepted standard
- It guides the "front-end" phases of the SE process for each capability iteration
 - o Enterprise (operational) analysis
 - o Requirements definition
 - o Life-cycle phase
- The analysts must have a thorough understanding of existing capabilities as well as the capability needs
- The JCIDS analysis team eventually determines the optimum combination of material and non-material alternatives to achieve the capability needs to the Battle Force

Systems Engineering Method

- Regardless of the analytical phase performed by the JCIDS SE team,
 - o The basic application of the SE method is constant throughout the process
- Each SE Method activity is performed in some form in each phase of the system life-cycle

Systems Engineering Method Over Life Cycle

To Next Phase

The Systems Engineering Method

Systems Engineering Method

Problem Definition

- At one point in time there is a problem that must be solved due to:
 - o Deficient capability with existing systems
 - o Desire to improve existing performance
- Need to understand what the objectives are to provide the desired capability
- Define the operational context within the Capability Enterprise!

Requirements Analysis Products

- A clear definition of the problem
- A proper scope of the problem
- Operational context documents and data bases
 - o Design Reference Mission
 - Strategy-to-Task Mapping
 - o Concept of Operations
 - o Physical Environment Database
 - o Threat Representation Database
 - o Blue Capabilities Database
- Relevant Operational Views

Captured within a SE Requirements Model

Systems Engineering Method

From Requirements Definition

Functional Definition Products

- Functional Decomposition of required activities
 - o Functional diagrams (FFBD, UML AD)
- Associated metrics with these functions (threshold / objective?)
- Analysis process that determines if you can solve with a material / nonmaterial / both solution
 - o Be able to document and defend this process
- How do we know it's right?
 - o The functions are legitimate, correct, and validated by users
- Functional Area Analysis
- Relevant operational views

Functional Analysis Documented in a SE Functional or Logical Model

Systems Engineering Method

Physical Definition Products

- Provide system alternatives towards satisfying required functionality
 - o Assignment of functions to physical elements
- DOTMLPF analysis products
 - o Based on the functional definition phase
- CONOPS changes / recommendations
 - o Based on DOTMLPF analysis
- Risk management strategies of the system
- System roadmaps to bridge the gap between the current and future capabilities
- Functional Needs Analysis
- Relevant operational and SYSTEMS views

SE Logical Model with Physical Definition Begins Evolution Toward a Systems Model

Systems Engineering Method

Design Validation Products

- Demonstrate the analysis documents the assumptions, follows a rigorous process, and arrives at meaningful conclusions that are justifiable
 - o There may be multiple processes and products dependent on the sponsor, personnel/time availability, experience
 - o This may be an iterative process for ICD, CDD, CPD
- Trade studies
- VV&A
- Risk Management
- Cost Analysis
- Force Allocation
- Functional Solutions Analysis
- Program Independent Assessment

Attain a Fully Validated Systems Engineering Model

Architectures in JCIDS

- "Integrated Architectures" are a foundation for the analytical process
 - Stated requirements, attributes and measures
- Direct reference to DoD Architecture Framework (DoDAF), however:
 - o Architecture is misused term within the realm of SE
- It is important to differentiate "architecture" from "architectural views"
- The JCIDS SE Model is the foundation for the architecture and the architectural views

Systems Engineering Model

- Model is a simplified view of a complex system
 - Assists stakeholders, including engineers, to understand something that is not easily comprehensible
 - Communicates the organization of the system to the stakeholders
- Rechtin
 - "Contributes to the structural stability of a system."
 - Enhances understanding of interfaces, relationships, operations and risk

"If you don't model it, you won't understand it."

Ivar Jacobson

Model-Driven SE

- An Systems Engineering model captures the essential elements of the systems engineering life-cycle
- "Dynamic and recursive process" (Bootch, Rumbaugh, Jacobson)
 - o Iteratively captures enterprise capabilities and systems requirements
 - o Promotes incorporation of technology evolution
- Forms basis for a sound, long-term SE and analysis
 - o Fully compliant with precepts of DoDAF and JCIDS

Model-Driven SE in Defense Systems Acquisition becomes Model-Driven JCIDS

Context of the Capability Enterprise

DOTMLPF

- Dot-mil-pe-ef'
- The "Non-Material" elements of the capability
 - o Doctrine
 - o Organization
 - o Training
 - o Material
 - o Logistics
 - o Personnel
 - o Facilities
- Investigate if a modification to any element except the "M" will enhance the Capability Enterprise
 - o A far less expensive option

Transition from Capability to System

JHU/APL SE Methodology Linkage to JCIDS

- JHU/APL SE methods can be used to produce JCIDS products/artifacts
- JHU/APL SE methods can iterate throughout the DoD 5000 lifecycle
- Good SE methods can produce JCIDS
- Bad SE methods can produce JCIDS
- Producing JCIDS does not guarantee good SE

Good SE ← Effective JCIDS

Final Thoughts

- JHU/APL has consistently provided SE expertise to numerous programs, following a rigorous and structured SE approach to the problem
 - o "It's all about the data"
 - o "It's all about the rigor"
- Program Offices have anchored their programs to our approaches and data

Summary

- Description of JHU/APL SE process
- JCIDS is consistent with good systems engineering practices
- JHU/APL SE process is consistent with JCIDS

