
10 Golden Questions for Concept Exploration and Development
Dr. Dan C. Surber, CSEP

Raytheon Technical Services Company, LLC
6125 E. 21st Street

M/S 31
Indianapolis, IN 46219-2058

Phone Number: (317) 306-4114
Fax Number: (317) 306-4949

E-mail address: D_C_Surber@raytheon.com
Copyright © 2005 by Dr. Dan C. Surber, CSEP. Published by NDIA for the 8th Annual Systems

Engineering Conference with permission.

Abstract. Project engineers and development teams must be able to quickly understand the
customer’s need. There are many tools, methods, and processes suggested for conducting
“Concept Exploration” and “Concept Development”. The author believes that there are “10
golden questions” which get the requirements elicitation done right. They apply to any Product
(knowledge, good or service), system, or organizational structure. The “10 Questions” go a bit
further than grammar school’s: “who, what, where, when, why, and how.” Interaction with the
customer/user illumines a key aspect of the system solution, “How does failure affect customer
satisfaction?” Asking, “What if the product, (seen at its various levels of decomposition such as,
“system/product/component”), FAILS to satisfy these ‘requirements’?”, leads the designer to a
better system solution. These answers take one to the next important discovery, answering, “How
do we achieve mitigation and control of any critical failure modes and their effects on mission
success, (through design, manufacturing, materials, and training).” This is the true purpose of the
systems engineering lifecycle.

Overview
Faster, Cheaper, Better. Today’s environment for systems developers is ultra-competitive,
whether it is for the Department of Defence (DoD), commercial products, medical systems,
automotive or consumer electronics. Managers and business analysts want pinpoint precision on
cost and schedule, and the customer wants ultimate satisfaction with “no failures”. Yet the crush
of business demands on the developer’s time, money and performance have not altered the basic
challenge for any system development: what must the system do? Expanding this line of
questioning usually leads to a number of “aha” events as the customer/user is led by the
developer to explain the answers to the same questions most 5th grade English teachers spouted:
Who, What, Where, When, Why, How?

There are standards and guides, used by NASA, AIAA/ANSI, and DoD to help with
processes for answering these questions. What does a system developer in the commercial world
do for some guidance and help? That is what this paper and its accompanying presentation will
endeavour to explain. The fancy word is “CONOPS”, short for Concept of Operations and
Support.

The Basic Premise
First Things. The developer’s fundamental challenge is get from concept to producible design.
There are tools like Enterprise Architectures, Popkin Tool for architectures, IDEF diagrams, Use
Cases, the 9 views in the UML, and entire processes like the Quality Function Deployment (all
four tiers) that are touted for their power to help define a system from a concept. (Cohen, 1995).
Most of them can be learned and mastered given enough time and effort, and with a lot of OJT
(on-the-job training). Many of them require an “enabling tool”, such as a database, and all tool
vendors require an on-going licensing agreement. So where does that leave system developers in
smaller companies with restricted resources? The author believes the answer is neither “not
helpless”, nor “hopeless”, nor “out in the cold.”

Next Things. The Software Engineering Institute at Carnegie-Mellon University has developed
an entire family of capability maturity models for enterprises that desire to develop systems in a
repetitive, effective manner that promotes continuous, incremental improvement and delivers
high quality products at competitive cost. At the heart of the CMM-I for Software, Systems,
Supply Chain and Integrated Product and Process Development is the premise that systems can
not be developed without understanding the needs of all the stakeholders, and the constraints
imposed on the system solution (both internal and external). (SEI, 2000)

Middle Things. The list of “10 Golden Questions” seek to explore the system concept using the
same abstracted, three-tier approach used in the CMM-I: System level, Product level, and
Component Level. (SEI, 2000) The list also includes a key question underlying the customer’s
responses to the questions: What effect on satisfaction does a failure have, seen through the
customer’s eyes. The importance of getting the customer to explain the CONOPS for the system
can not be emphasized enough, since it forms the context of “what does failure to do ‘x’ mean?”
Most customers come in the door with “wants and needs”. It is the task of the systems engineer
to “elicit the customer’s real requirements…” through dialogue and exploration of the underlying
concept of operation, maintenance, support and disposal. (Hooks, 2000)

Last Things. Using the questions does not guarantee that the developer will create the right
system for the customer’s need, nor that the system will be done right. However, using them
does ensure that the developer is armed with much more of the knowledge about what will most
satisfy the customer’s need, at the beginning of the product development life cycle. Use of good
systems engineering principles, processes, tools and project management discipline will help
ensure the right system is built right. The author recommends that the answers obtained through
the use of these questions be used to “seed” the requirements analysis, development and
preliminary design processes within the enterprise product development process. Retention of
this data in DOORS or other suitable requirements database will help trace the concept to the
solution space and its methods of verification.

The “10 Golden Questions”
The Big Picture. This paper will provide a brief look at each of the “10 Questions” in the
remainder of this discussion. Usage of the questions is meant to first explore the SYSTEM level;
then into the PRODUCT level; and, finally into each product’s COMPONENTS. Implicit in the
answers to each question is to also understand the “effect of failure to meet/satisfy that question”.
Keep this in mind as the questions are reviewed. There is also an implicit “iteration” loop
between these levels, as knowledge is gained at each hierarchical level. This “sharing” is meant
to go both vertically and horizontally within the system hierarchy.

This early activity, while called Concept Exploration and Development, is a powerful ‘driver’ on
the end result: the system architecture, its design, and success of the integration, verification and
system validation effort. Time and money spent in the Concept Exploration and Development
phase is well invested, based upon the author’s own experience. Remember also that systems are
composed of hardware, software, tools, training, technical data, people, facilities, and system
data. (Rechtin, 2002) Architecture decisions made in the first 20% of system’s development can
affect almost 70% of its ultimate cost. (Blanchard, 1998; Buede, 2000)

1. Who are the System Stakeholders. Most authors writing on the subject of requirements
development emphasize the importance of understanding the customer’s need. Jeffrey Grady
argues that there is truly just one requirement, the “need”, as everything else is derived from
it (Grady, 1993). The CMMI model stresses the importance of understanding the
INTERNAL, as well as the EXTERNAL, stakeholders’ expectations. Clarity of stakeholders
is just as important as understanding the system context (item 6) and the system concept of
operations and support (item 5). Consider this question as the understanding of the concept
development within the enterprise and its environment.

2. What are the System Goals and Objectives. The perspective of the person, or the
organization, making inputs will affect the stated Goals and Objectives for the system under
investigation. Perceptions are an enormous influence in what is said, and how it is weighted.
The systems engineer must gather “all” the points of view, and then filter through them to see
the FULL picture of the system concept, as it is envisioned by the group of stakeholders.
Fundamental questions regarding the maturity, or risk factor, of the technology and the
market(s) targeted by the system can yield a large number of implied requirements,
constraints, and other expectations.

3. What is the market for this System. The commercial product development “world” starts
with an analysis of the customers, their needs and expectations, and the markets for a
product. Then the firm risks its own capital to do the product development. A DoD
acquisition is quite the opposite. However, both “markets” affect one significant source of
requirements: product safety, reliability, and homologation. DoD systems often have these
sources of requirements called out in their Statement of Work (SOW) or their System
Specification. Such is not often the case for commercial products. The market of intended
sale often defines the regulations to be satisfied for safety, reliability and homologation. The
firm must have a solid and repeatable process for developing products if it is to ensure a
reasonable profit on the finished system.

4. What are the external constraints on the System. The systems engineer is interested in the
external interfaces, and the external and internal constraints, which will be imposed on the
system. A constraint is seen as a type of requirement, and most often it means that the system
being developed will have to ADAPT to the constraint…this means early definition and then
rigorous control of that “interface” in order to ensure the system meets its requirement during
integration and testing. Mr. Thomas Stephens, Chief Engineer for the Engineering and
Production Support business unit of Raytheon Technical Services Company, LLC has noted
that “Constraints can be any external influence on the system – including org structure of
implementation team, teaming relationships, cost.... as well as technical.” This is an
important distinction for the successful development of a full understanding of external
constraints on the system.

5. What is the CONOPS for the System. Most commercial, and many military, product

development programs fail to adequately staff, develop, and design for the SUPPORT needs
of the system after it becomes OPERATIONAL. The author believes that the only way to
remedy this behavior is to DEMAND that the Concept Exploration Phase includes an explicit
discussion with the customer, acquisition, and end users. This discussion must specifically
detail the SUPPORT concept for the system, even at this conceptual stage. There most
definitely going to be REQUIREMENTS defined in these expectations, goals and objectives.
An enormous part of a system’s Life Cycle Cost is its support needs during its operational
phase. (Blanchard, 1998)

The DoD acquisition process mandates that a Concept of Operations, or Operational
Concept, document be developed as part of the system concept exploration and serve as an
input to the System Functional Review (SFR). The Use Case view in the UML is also an
excellent way to extract the answers to “Who, What, Where, When, Why, and How?” The
stakeholders and the CONOPS will help to understand the goals and objectives of the system.

6. What is the System Architecture context. This question is meant to focus on the people,
facilities, support equipment, tech pubs, hardware, software, data and processes that will
comprise the system once it is defined, designed, built and tested. (Rechtin, 2000) This
question is asking the team to visualize how the concept will be produced, packaged,
shipped, stored, readied for operational use, supported, and finally its disposal. Expectations
for Pre-planned Product Improvement (P3I), technology refreshing, dealing with
obsolescence, and future systems integration (growth), will all affect decisions about the final
architecture selected for the system.

7. What are the man-machine interfaces to be satisfied by the System. Operators and
maintainers need to be considered in understanding the expectations for the man-machine
interface, and the machine-to-machine interfaces. Networking technologies are making it
much more likely that a great deal of the system communications will be on a network, and
may not require a man-in-the-loop or even desire to have that interface. Many systems are
adopting a report-by-exception method of reporting health and status as well. Use of any
existing interface protocols is an important expectation to discover during this early phase of
the system definition.

8. What are the Key System Attributes. There are many methods and tools for discovering
and documenting the key requirements of system attributes. This author likes the approach
offered by Jeffrey Grady in System Requirements Analysis, 1993. He proposes that there are
four types, or categories, of requirements for a system. They are (1) performance; (2)
environmental; (3) interface; and, (4) design constraint. The key factor in determining if they
are true requirements is “can they be stated as a value, relation, units and method of
verification.” If the answer is “NO”, then the systems engineer is still working with “needs”
and must decompose further. In DoD systems they often identify Measures of Effectiveness
(MOE) that relate to mission success. Commercial system developers can define similar
“requirements” for their systems.

9. What are the System functions (behaviors) that satisfy the Key Attributes. Now the
systems engineer can start to have some fun. Identifying WHAT the system must do is an
essential task to begin before the designers (hardware or software) start to “leap” to the
solution. Remember that the key to innovation and customer delight is maintaining the
“solution space” at its maximum during concept exploration and system definition. Early
commitment to design solutions often causes a sub-optimized system with problems that are

not found until integration and test…very expensive. (Blanchard, 1998; Buede, 2000)

10. What happens to “success” if the System FAILS to meet any of the above. A chief intent
of this method of using “10 questions” is to intentionally ask the question “What if the
system fails to do this?” The concept is to do something akin to the Functional Hazard
Assessment demanded by the Federal Aviation Administration (FAA) when a commercial
transportation system is being developed. The developer must answer the question “How
does your design mitigate and control the potential hazards this system may encounter?” By
doing so, the developer understands which system functions are CRITICAL, and which parts
of the design perform those functions. Systems engineers are interested in interfaces,
functional, logical and physical…because most of the failures occur at the interfaces.
(Leveson, 1995) This information can then be passed to the design engineer(s) for a more
robust implementation of this concept through preliminary design and detailed design.
Traceability of criticality and mitigation through design to verification also helps ensure key
system behavior that is essential to customer-defined success is not lost during iterations and
change.

SUMMARY
The fundamental challenge for the developer will not go away…they must still move as quickly
as possible from concept to design and finally to manufacturing. Along the way the designer
must be systems engineer and find the “needs” that the customer has not made known.
Prioritized requirements that are the system’s key attributes for the chain of understanding
leading to effective designs. The developer (team) must see the system’s life cycle, and “be” the
maintainer as well as the operator. A successful developer (team) must also understand the
inherent architecture in which the system’s end design will operate, and how failure of a
system’s individual requirements (key attributes) will affect the architecture, mission success,
and ultimately, the customer’s need.

It is essential that the initial analysis team that developed the concept(s), requirements, and any
trade studies capture this data in the “requirements database” so that further elicitation and
decomposition of the requirements and their deployment through the design process can be
traced to functions, interfaces and methods of verification. The insight the team gains from use
of these 10 questions can accelerate the product development process and improve the hand off
of a solid concept to the functional analysis team and the identification of key measures of
effectiveness and initial technical performance measures.

CONCLUSIONS
More formalized structures and methodologies can be used for concept exploration and
definition. However, most of them demand tools with databases, and licenses, and some amount
of learning by the tool user. The author has suggested a more brief, but concise, list ten (10)
questions which can be used to rapidly elicit the system requirements and expectations from the
customer’s “need”. These requirements can be understood at three (3) abstract levels: first at the
system; second, at the product; and, third at the components. The author believes that this is the
best, and fastest, way for a team to achieve their understanding of the system concept. This
approach employs systems engineering principles, requires use of cross-functional team
members, and follows a top-down, hierarchical approach that seeks functions, then form
(design), and applies this understanding to the system’s architecture (functional, logical, and

physical). Interfaces are key points of understanding, because failures most often occur at those
interfaces, internal and external. Any team can use this approach, even with a simple tool like a
spreadsheet. The author hopes developers and teams in the wide world of product development
will use these “10 Golden Questions”, and offer feedback and lessons learned on their utility.

REFERENCES

Blanchard & Fabrycky. Systems Engineering Analysis, 3rd ed., 1998.
Buede, Dennis. The Engineering Design of Systems: Models and Methods, 2000.
Cohen, Lou. Quality Function Deployment, 1995.
Grady, Jeffrey O. Systems Requirements Analysis, 1993.
Hooks, Ivy. Customer Centered Products: Creating Successful Products Through Smart

Requirements Management, 2000.
Leveson, Nancy. Safeware, 1995.
Maier & Rechtin. The Art of Systems Architecting, 2nd ed., 2000.
SEI, Carnegie Mellon University. CMMI: Staged Representation (SE/SW/IPPD), v.1.1, 2001.

BIOGRAPHY
Dr. Surber is an INCOSE Certified Systems Engineering Professional, and has worked as a pilot,
engineer and manager in avionics systems and heavy equipment engineering for over 30 years
with three large defense contractors and a large, commercial corporation. He is an experienced
senior pilot, flight examiner/ instructor, human factors engineer, systems safety engineer, and
military accident investigator. He has accumulated over 5,000 hours of flight and simulator time
in 17 types of military and commercial aircraft; holds a pilot rating in single and multi-engine
aircraft; and, is a rated parachutist. In 1998 he retired after 29 years of military service with the
United States Air Force, and with the Army National Guard and Reserve in various armor,
mechanized infantry, aviation and military intelligence units. He is a Principal Systems Engineer
for Raytheon, where he works on the V-22 Osprey program, and supports process improvements
as a Raytheon Six Sigma Specialist. Dr. Surber has been a member of INCOSE since 1998, and
is currently Past- President for the INCOSE Crossroads of America chapter in Region IV.

