Software Supportability: A Software
Engineering Perspective

Stephany Bellomo
SAIC, Project Manager

My Background

MS, Software Engineering

Lockheed Martin, Satellite System Programmer (C++
Developer, DBA)

Intuit, Software Project Manager, (C++, Java, CORBA,
Architecture)

Verisign, IT Project Manager

SAIC, Software Project Manager for CDC Select Agent
Program

Overview

m 5 Supportability Principles

Lesson’s [Learned
Key Phase Recap
Conclusion

Contact Information

®
From Science to Solutions™

Supportability Principles Introduction

Methodical approach to protecting system against

vulnerabilities
Vulnerability

Here?

Vulnerability 1. Design for
Here? Supportability

2. Check the
5. Organize for “ilities”

Supportability vl e
ulnerability

Here?

Vulnerability 4. Co.ntrol
Here? Quality

Look for Vulnerabilities

Supportability Principle Overview

m 5 Supportability Principles
. Design for Supportability
2. Check the “ilities”
- Manage Change
2. Control Quality
5. Organize for Supportability

Look for Vulnerabilities

T ee———Ay W -
vy N S o
From Science to Solutions™

Design Suggestions for Managers

Design for Supportability

Designing for supportability requires diligence on the part of
both managers and engineers

What can managers do to identify vulnerabilities?
o “What if” scenarios

§ Ask your technical team what the Achilles heel 1s — They will tell
you!

Look for Vulnerabilities

T ee———Ay W -
vy N S o
From Science to Solutions™

Design Suggestions for Engineers

m What can engineers to improve supportability through
design?

¢ Use a fully replicated production environment for pre-release
testing

¢ Don’t skimp
+ Parameterize using configuration files
¢ Use frameworks to control design

¢ Carefully evaluate COTS products before incorporating into the
design

¢ Incorporate distributed component design up front

T ee———Ay W -
vy N S o
From Science to Solutions™

Staging Example

m Projects often double-use Integration Test and Staging

¢ “It’s not exactly the same environment as production, but theoretically it should

work”™

T

Stage = Production

T ee———Ay W -
vy N S o
From Science to Solutions™

Staging Example Cont.

m Fully Replicate the Pre-Release Staging Environment

Build 1 Build 1 g - Production
Build 2... Build2... | pre-Release | Fully . Release
| . Replicated

Stage = Production

Staging Lesson Learned

m Example: Recently technical lead skipped the staging for a
small, non-production build

+ 8 hrs later still working deployment 1ssues

Staging Sklpped

sGa 8D & B

¢ [ssue 1dentified 72 hour after pushing to Stage

Stage = Production

T ee———Ay W -
vy N S o
From Science to Solutions™

Configuration File Example

m Design Tips for Engineers

= Use Configuration Files

= Avoid hard-coding variables (I.e, IPs, hostnames, DB names, etc.)

= Benefit — Supports dynamic changes to hardware setup

Config File
Setenv [P 122.11.333
Setenv DBNAME DBI...

Use Config Files

T ee———Ay W -
vy N S o
From Science to Solutions™

Configuration File Lesson Learned

m Recently migrated a legacy system to another HW
configuration for high-availability (clustering)
¢ Spent 2 weeks removing hard coded values

¢+ Host names and IPs were embedded throughout the code and
reports

DocReport.rpt -

SQLConnect(‘DB1’);

Use Config Files

T ee———Ay W -
vy N S o
From Science to Solutions™

Frameworks and Design Patterns

m Encourage developers to consider frameworks and design
patterns during design phase
¢ Frameworks
¢ Data Entry Frameworks, Business Rules Frameworks, etc.

¢ Design Patterns: Elements of Reuseable Object-Oriented Software
¢ By Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

¢ COTS Best Practice

¢ l.e, Documentum, Crystal Enterprise, Oracle Security, SQL Server,
etc.

Focus on Frameworks

I / — ¥ I
vy N S o
From Science to Solutions™

Framework Definition

® A Framework is a set of cooperating classes that make up
a reusable design for a specific class of software

¢ L. Peter Deutsch. Design reuse and frameworks in the Smalltalk-80
system

¢ Quoted in Design Patterns: Elements of Reuseable Object-Oriented

Software by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides (gang of four)

Focus on Frameworks

I / — ¥ I
vy N S o
From Science to Solutions™

Frameworks [Lesson L.earned

m Indicators that you need a framework

¢ Frequently making the same types of code changes
¢ Frequently adding fields to the schema

+ Example: Document Tracking Table

DocumentTracking

DoclID DocName Reviewed DT Approved DT ...adding
tracking

tables and date
fields to DB for
each new Event

Dl Docl 10-01-2005 10-15-2005

D)) Doc2 10-03-2005 10-17-2005

Focus on Frameworks

I / — ¥ I
vy N S o
From Science to Solutions™

Frameworks Lesson I.earned Cont.

m Framework-Driven Event Model

¢ FEvent additions are data driven

¢ No schema changes needed to add an Event

EventType DocEvent

EventID Event Type DoclD EventID EventDT

El Review D1 El 10-01-2005

E2 Ar\r\vnvp D2 El 1N 1~ ~nng

PR

E3 New Event D1 E3 10-15-2005

f Event Framework
Add new event here Adds Date here

Focus on Frameworks

T ee———Ay W -
vy N S o
From Science to Solutions™

COTS Lessons Learned

COTS are generally a good thing, but can drive bad
design decisions

© This 1s an ever increasing problem as the government
encourages use of COTS

Two Real Life Examples of COTS abuse

I. Cold Fusion Dot Com experience
2. Business rule scripting in UI or PDFs

Use COTS Carefully

T ee———Ay W -
vy N S o
From Science to Solutions™

Distributed Design Intro

m Enforce Distributed Component Design through physically
distributed methods, not coding standards

+ Software distributed component architecture can be enforced by
RMI (I.e, Web services, COM, etc.)

+ Node distribution severs ties to object libraries

= What happens if you try to “fake 1t”?

¢ Library dependencies aren’t discovered until production release
testing

¢ Result — Last minute scrambling. ..

Distribute Early and Often

Distributed Design Don’ts

m Plan for Unforeseen System Interface Requirements to
other systems

= Build Internal System Interfaces

® Don’t rely on coded frameworks (COTS or homegrown) to
encapsulate layers

Kava or C+
: ance Lay
A Ot

e
—

Distribute Early and Often

T ee———Ay W -
vy N S o
From Science to Solutions™

Distributed Design Lesson Learned - 1

m Example: In 1993 first job out of VA Tech, worked
on a DoD satellite simulation system

¢ Tasked to resolve this error for 6 months

¢ Why?
¢+ Distributed design enforced by coding standard
+ No physical separation of software components

» Months to untie code dependencies after physical distribution

Distribute Early and Often

T ee———Ay W -
vy N S o
From Science to Solutions™

Distributed Design Lesson Learned - 2

m Original SOW requirement
¢ Mile-high view - Build Single Government Agency Database

m Requirements change
+ Allow another Government Agency to securely view data in database
® Good news

+ System is framework-based and extendible

+ However, still significant work to put persistence layer behind web
services interface

&3

(Gov, Public)

Distribute Early and Often

T ee———Ay W -
vy N S o
From Science to Solutions™

Distributed Design Do’s

+ Do use distributed component interfaces to separate
software layers (I.e., Web Services API)

¢+ Provides extendible data access through a secure interface

Secure

Agency System

Web Services i External
Internal “
“ API L Agency System

Persistence Layer
Objects i

——-
Agency DB

Distribute Early and Often

Check the “ilities”

Check the “ilities”

v Security

v Reliability

v Flexibility
Maintainability
Scalability
Availability

Check the “ilities”

Configuration Management

Manage Change
¢ Don’t attempt too much change at once

¢+ Evaluate system impacts with changing requirements
¢ Use the CCB*

¢ Resist the temptation to “just add it in this time”

CCB = Configuration Control Board

Change a little. Test a lot...

®
From Science to Solutions™

Database Configuration Management

m Worst configuration management issues consistently revolve
around Database CM

¢ l.e., Stored procedures, Schema versioning, Scripts, Hand-data entry

m Reasons for poor database CM

+ In my experience, DBAs often don’t have formal Software training

¢+ SW Developers trained to use CM tools at entry level, but DBAs often
not included in CM training

¢+ DBASs often don’t have to integrate with others
¢+ Work independently

* Don’t need to update baselines to test code

Enforce Database CM

T ee———Ay W -
vy N S o
From Science to Solutions™

Database CM Lesson [Learned

m Database Management Fundamentals

¢ Creating and enforcing Database change procedures must be part
of DBA Responsibility

+ Stored procedures must be and scripts stored under configuration
control

+ Example — “Lost stored procedure story”™

+ All databases should be made through scripts AND
TESTED!!!

Enforce Database CM

T ee———Ay W -
vy N S o
From Science to Solutions™

Quality Control

4. Quality Control

® Monitor to maintain quality and identify new risks
s Keep CMMI inspections technical
= Develop processes and follow them

m Enforce Independent Verification and Validation

= At a minimum, developers should not test their own code

QA person should report to Program Manager

Anytime is good time for a Technical Question

T ee———Ay W -
vy N S o
From Science to Solutions™

Organize for Supportability

S. Organize for Project for Supportability

m Supportability failures often occur between teams or areas of
expertise

¢+ l.e., software team, network team, SA, Security, etc.

m Mitigation strategy

¢ Assign someone the specific role of enforcing cross-disciple technical
quality

Architect: The Tie that binds

Organize for Supportability Cont. ===

Program Mgr
|
| | |
Project Mgr Test Mgr

Chief Architect (CA) *

| | | |
Software Lead Network Lead

m Chief Architect leads cross-discipline teams
¢ Qualified Tech Leads start as Software, Network or System Engrs

m Challenge: Finding architects that can manage outside their
“Comfort Zone”

Architect: The Tie that binds

Key Phrases

Look for Vulnerabilities

Stage = Production

Use Confiqg Files

Focus on Frameworks

Use COTS Carefully

Distribute Early and Often

Change a Little. Test a lot...

Enforce Database CM

Anytime is a Good Time for a Technical Question
Architect: The Tie that Binds

Conclusion

m In all project activities, ask yourself these
questions:

Does this Design Decision promote Supportability?
Have we considered all the “ilities™?

How well are we Managing Change?

Are we adequately Controlling Quality?

Are we organized for Supportability?

Contact Information

® My contact information:

¢ Stephany.a.bellomo(@saic.com

m Feel free to send me questions and/or comments

