
NDIA 8NDIA 8thth Annual Systems EngineeringAnnual Systems Engineering
ConferenceConference

““Automated Software Testing Increases TestAutomated Software Testing Increases Test
Quality and Coverage Resulting in ImprovedQuality and Coverage Resulting in Improved

Software Reliability.Software Reliability.””

October 25, 2005October 25, 2005

Frank Salvatore
High Performance Technologies, inc.
3159 Schrader Road
Dover NJ, 07801
(973) 442-6436 ext 249
fsalvatore@hpti.com



OutlineOutline

� Introduction
� Background
� Project Purpose & Goals

� Overview
� SW Reliability
� Statistical Testing
� Model Based Specification and Testing

� Development Flow
� Tool Set Architecture
� Module Review
� Auto Tester
� Conventional vs Statistical Testing



BackgroundBackground

� Phase I SBIR Completed in FY 2004 proving
feasibility.

� Phase II SBIR to Start in FY 2006
� Sponsor: US ARMY ARDEC, Fire Control

Systems & Technology Division (FCSTD)
� Contractors:

� Cognitive Concepts, LLC Prime
� High Performance Technologies, Inc (HPTi)
� Software Silver Bullets



Project Purpose & GoalsProject Purpose & Goals

� Generate an integrated process which enables any SW
Development organization to apply Model based
Specification and Testing (MST)

� Significantly advance the state of the practice for
system level MST.
� Create large models of complex system software behaviors

that closely represent expected operational behavior of a
specific system.

� Automatically generate test cases from the model.
� Define and store test scripts associated with every stimulus in

the test population.
� Generate executable test scripts.

� Implement the required tools that will enable bringing
Model Based Specification and Testing technology to
market.

� Reduce Software Life Cycle Maintenance Costs.



Overview SW ReliabilityOverview SW Reliability

�Software Reliability - Probability of failure-free
software execution in a specified operating
environment.

�Software Reliability Engineering - Systems
engineering process activities ensuring reliable
software systems.
� Assessment - software reliability can be assessed

(measured) only when the software is executing, either in a
test lab or in the field.

� Prediction - prior to having executable software,
assessment is done by inference via a forecast.



SRE ChallengesSRE Challenges

�Verifying the system does what users want.
� Integrating Requirements analysis and System

Software testing.
�Determining what to measure and when to

measure it.
�Limiting scope and breath of testing to stay on

schedule.



SRE Fundamental PrincipalSRE Fundamental Principal

SRE involves:
�Developing an operational, or usage,

profile of the software system under test
and

�Exercising random test cases from the
profile to obtain a direct assessment of the
reliability of a software system



Statistical Testing in a NutshellStatistical Testing in a Nutshell

Statistical Testing
� Specification represented in the form of usage models
� System tests generated directly from usage models

Markov-chain usage models
� Black box state-based models that cover every possible

state of usage for a software system
� External behavioral representation of system
� Composed of states (conditions) and arcs (stimuli)

Software tool generates random test cases



Current State of System Software TestingCurrent State of System Software Testing

Requirements
Definition

Test Case
Design

Test Procedure
Development Test Execution

Current Testing Practice Advanced MST Process
Software

Requirements
Automatic

Test Executer

Automatic
Test Generator

Automatic
Test Scripter

Automatic
Model Specifier

closely integrated

Industry practice for testing military applications
uses a requirements-based approach.

� Test cases are defined for each requirement, or shall statement.
� Test cases are designed manually or with a software tool that is

independent of the requirements tool.
� Test cases are scripted manually or with a tool that is not

integrated with the test design tool.
� Tests are executed manually or in some cases the tests are

automated utilizing a project specific test automation tool.

An innovative approach to requirements specification and testing



MBT StructureMBT Structure

�MBT is a black box representation of
the expected behavior of system
software.

�A model-based specification is called a
usage model specifying how the
system is used, or behaves.

Idle Begin

Alpha

Beta

End

STATE M ACHINE
Nodes are states-of-use
Arcs are possible stimuli
Probabilities (p=1) define expected usage
Test case is a path from initial to term inal state

Start
p=1 A

A

A

B

B

B

Quit

Quit

p=.9

p=.1

p=.1

p=.1

p=.01

p=.05

p=.85

p=.89



MST OverviewMST Overview
MST

� Provides a structured approach to requirements analysis
and software test design.

� Ensures the system specification prescriptive and
consistent to enable automatic generation of system
software test cases.

� Facilitates an objective assessment of system software
reliability.

� Enhanced communication between developers and
testers.

� Eases the updating of test suites for changed
requirements.

� Shorter schedules, lower cost, and better quality.
� A model of user behavior.
� Early exposure of ambiguities in specification and design



MBT Development FlowMBT Development Flow

documentation,
mental models

unambiguous
description of correct

system behavior

formal, suitable
input for test tool

Automatic generation
and execution of tests

System interface access

(formal)
specification

model

formal
test

model
test tool system under

test (SUT)
informal

specification

test environment



Model
Specification

Module

Model
Specification

Module

Model
Analyzer

Test
Generation

Module

Test
Generation

Module

Test Case
Analyzer

Test
Translation

Module

Test
Translation

Module

Test
Execution

Module

Software
Requirements

rules
of

behavior

auto
generate

Usage
Model

Analysis
Results

manually
modify

type and
number
of tests

Test
Cases

criteria

stimulus list

script
info

Software
Requirements
Specific Script

Library

Test
Scripts

Test setup
-drivers
-interfaces
-commands
-etc.

System
Under Test

simulator

emulator

Test scripts sent

Test results returned

auto
generate

Analysis results

importexport

= general purpose module

= project specific module

= part of Test Generation Module

Toolset ArchitectureToolset Architecture



Model Specification ModuleModel Specification Module

Capability:
� Tabular entry of system requirements.
� Definition of the system boundary by itemizing all input

stimuli and responses
� Specifying traceability via requirement tags.
� Enumeration of input stimulus sequences
� Automatic analysis of the completed enumeration to verify

coverage and to construct the usage model.
� Define usage variables and associate a unique set with each

state in the model.
� Assigning probabilities to each transition in the usage model.
� XML schema for storing and managing the above data



Test Generation and Analysis Module.Test Generation and Analysis Module.

Capability:
� Provides Markov analysis of the usage model for

properties useful for model validation and test planning.
� Enables test case generation via random walk, relative

probability, and graph coverage algorithm.
� Enables test case management necessary for pass/fail

recording and format conversion.
� Provides analysis of test results to compute coverage and

reliability metrics



Test Translation ModuleTest Translation Module

Capability:
� Accepts operator input to build script fragments for each

system stimulus and export the result to the script library.
� Reads stimulus mapping information from the script fragment

library that maps the stimuli used in the model to codes
readable by the Test Execution Module.

� Determines proper code sequences to perform the test cases
created by the Test Case Generator.

� Generates test scripts for the Test Execution Module from the
fusion of script fragments



Test Execution ModuleTest Execution Module

Capability:
� Executes target specific test scripts using hardware and

software elements designed to interface with the system
under test.

� Provides the operator an interface to observe the test steps
being performed as well as enabling the operator to pause or
restart testing.

� Logs any results generated from the testing in formats for
human interpretation and for input to the Test Case Analysis
and Generation Module



AutoAuto--TesterTester

Capability:
� Perform end-to-end testing of System Software.
� Record scripts from a PC keyboard and play them back to

the keyboard port of a PC.
� Translate the serial communication between the Display

Unit (DU) and the AFCS Computer Unit (ACU).
� In order to support the Enhanced Display System (EDS),

the connection to the Auto Tester would be inserted
between FBCB2 and the ACU, not between the EDU and
FBCB2



Automated Test CapabilityAutomated Test Capability

Capability:
� Supports Developmental, Integration, and Formal

Qualification Testing (FQT) of a Fire Control Software
System.

� Provides and demonstrates a means to capture test
cases and procedures in a reusable form.

� Supports management of test artifacts, including
storage, retrieval, editing, merging, and searching.

� Perform end-to-end testing of a Fire Control system
software.

� Monitors and records the system’s responses to
stimulus, and, as necessary, emulates the appropriate
response via a system interface to complete a given
test case.



Applying MST to Achieve Software SafetyApplying MST to Achieve Software Safety

� Traditional approaches include static analysis
� MST provides a robust, dynamic approach

� Models cover all usage states, including rare ones.
� Statistical testing ensures that potentially hazardous unknown

or unforeseen events are covered in the system test suite.
Static analysis alone cannot predict the consequences of
highly complex behaviors.

� MST is a supplement to, not a replacement for, methods
such as Fault Tree Analysis and Hazard Analysis.



SummarySummary

� Automated Software Testing Increases Test Quality and
Coverage Resulting in Improved Software Reliability.

� Project starts FY06
� Results will be provided in a final report and

demonstration.
� Advance the state of the practice for system level MST.

� Create large models of complex system software behaviors that
closely represent expected operational behavior of a specific
system.

� Automatically generate test cases from the model.
� Define and store test scripts associated with every stimulus in the

test population.
� Generate executable test scripts.

� Integrated Suite of Tools.



Questions?Questions?


