Robert M. Cranwell, Manager Readiness & Supportability Programs Sandia National Laboratories (SNL) Albuquerque, NM 87185

> 8th Annual NDIA Systems Engineering Conference October 24-27, 2005 San Diego, CA

Phone: (505)844-8368 Fax: (505)844-3321 Email: rmcranw@sandia.gov Web Site: reliability.sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Sandia National Laboratories

New Mexico

"Helping secure a peaceful and free world through technology"

- 8,000 employees in New Mexico, California, Nevada, and Hawaii
- Responsible for research, development, engineering, and maintenance of U.S. nuclear weapons
- Responsible for all non-nuclear subsystems; the primary systems integration and engineering lab
- \$2B annual budget
- \$550M from other federal agencies
- \$50M from private industry through R&D partnerships

California

Major Readiness/Supportability Initiatives

Future Combat Systems

Sandia National Laboratories (SNL) UA System-of-Systems (SoS) Supportability Modeling & Simulation

Distribution authorized to the Department of Defense and U.S. DoD contractors only by direction of PM UA, August 2004. Other requests shall be referred to PM UA.

What is a System-of-Systems?

Key to understanding a System-of-Systems (SoS) is the notion that a SoS performs a function not possible with any of the individual parts (systems) acting alone

- In this context, a SoS can be viewed as a collection of interdependent systems that are integrated to provide a prescribed capability
- The loss of individual systems within the SoS will degrade the performance or capabilities of the SoS
- However, individual systems within the SoS can provide a capability or function independent of the other systems within the SoS

A SoS can be viewed as multiple systems, each capable of independent operations, but must interact in order to fulfill a global mission.

Optimization

Analyses

Multiple states (not just functional or failed)

· Able to incrementally add new components

State Model Objects

Uncertainty Characterization

Scalability to large numbers of platforms

Can include multiple pulses throughout campaigns

Includes complex communications & data networks

Includes integrated logistics support during campaign

Tracks dynamic changes in force structure during campaign

Includes external factors (weather, terrain, threats)

Simulated Campaigns

Incorporates complex interdependencies

- Provides Capability for Analyzing:
 - Systems as well as Systems-of-Systems
 - Warfight capabilities (pre, post, during campaigns)
 - Spiral integration of technologies

Flexibility to Include:

- Complex supply & support networks
- Stochastic treatment of combat damage
- Human performance (maintainers, warfighters, ...)

Allows Analyst to Assess Impacts of:

- PHM
- Asset visibility
- Commonality & complex functional redundancies
- •Time-Dependent Warfight Capability
- ·UA/SoS MOE's/TPM's
 - Sensitivity Trades
- Optimization Analyses

Integrated methodology provides unique capabilities for SoS analysis

State Model Concepts

- Multiple functions/operations
 - Mobility
 - Communications
 - Sensing
 - Lethality/Firepower
- Multiple States (not just functional or failed)
- Models interdependencies
- Can include external factors (weather, terrain, combat, …)
- Able to incrementally add new components
- Model system behavior by defining:
 - States for all subsystems/components/functions
 - How transitions are made between states
- States can change through:
 - Normal processes (failure, repair,...)
 - External conditions (weather, terrain, combat,...)
 - Changes in functional states of other systems

NLOS-C State Model Object

FLITLIRE COMBAT SYSTEMS

One Team—The Army / ĐĂRPĂ / Indust

NLOS-C Model

- Example Elements
- •105 mm Cannon
- •M240 Machine Gun
- •Sandstorm

Example Operations

- •Operability
- Lethality
- Mobility

Intuitive Environment for Capturing System Behavior

Soldier Performance Modeling

- Multiple Functions/Operations
 - Navigate
 - Communicate
 - Combat
 - Maintain . . .
- Multiple States
 - Not just functional or failed
- Model soldier behavior by defining:
 - All possible states
 - How transitions are made between states
- States can change through:
 - Fatigue
 - Stress
 - Sleep deprivation
 - Training . . .

One Team-The Army/DARPA/Industry

Human Performance is Key to Modeling Complex SoS's

State Model Results

FUTURE COMBAT SYSTEMS

- System Performance Analyses
 - Reliability
 - MTBF
 - Availability ...
- Sensitivity Analyses
- Optimization Analyses
 - Spares
 - Performance trades
 - Resource allocation

Rank: 1 Export <u>1 Summary 2 Details</u>				
Performance Measure	Baseline	Limit	Objective	Value
Fitness	0.00461			0.758
NLOS-C : Reliability	0.535	0.580	0.600	0.594
C2 : Reliability	0.773	0.800	0.820	0.807
Cost 1	0	2.00E+7	1.20E+7	1.23E+7
< · · · · · · · · · · · · · · · · · · ·				
,				

Incorporates State Model Objects (SMOs) to dynamically represent a given scenario for a defined force structure

- Creates and duplicates platforms and platform types (Defines Force Structure)
- Describes Scenario/Campaign
- Describes Functions for Each Platform Type
- Describes System/Elements Properties
- Describes External Conditions

- Reachback Uod AOR 150 X 150 km
- Evaluates/tracks Functionality of Force Structure during Campaign
- Tracks Supplies & Services (Logistics Footprint)

Defining Force Structure

Example Battalion Structure for Simulation

Force Structure is established in Simulation Software by creating and duplicating platforms and platform types

Simulation Scenario Structure

FUTURE COMBAT SYSTEMS

RPA/Industry

Laboratories

Edit Scenarios

Ground Vehicle Scenario Scenarios Systems Desired Stat Condition 🔺 End On Speed RSV-004 :Ground Vehicle Scenar Length Direction Location RSV-005 :Ground Vehicle Scenar 1 Time 72 Field Operating None 2 Distance 24 Repair Facili Operable RSV-006 :Ground Vehicle Scenar None RSV-007 :Ground Vehicle Scenar 3 Time 72 Field None Operating All States True RSV-008 :Ground Vehicle Scenar RSV-009 :Ground Vehicle Scena: Edit Scenarios Air Vehicle Scenario Scenarios Systems. **Firectio Speed Location** Lenath Desired State | Condition Level UAV-020 :Air Vehicle Scenario 🔺 . :Air Vehicle Scenario None 0 -UAV-021 2 Field Operating -UAV-022 :Air Vehicle Scenario 2 6 Repair Facility 0 Operable None UAV-023 :Air Vehicle Scenario 3 2 Field Ω Operating None • UAV-024 :Air Vehicle Scenario 6 4 Repair Facility Operable None 0 UAV-025 :Air Vehicle Scenario 5 2 Field Turbulence 1 Operating UAV-026 :Air Vehicle Scenario lGround 6 6 Repair Facility Operable None 0 UAV-027 :Air Vehicle Scenario 2 7 Turbulence Field Operating 1 UAV-028 :Air Vehicle Scenario 8 6 Repair Facility Ο Operable None Ad UAV-029 :Air Vehicle Scenario 9 Ω 2 Field Operating None UAV-030 :Air Vehicle Scenario 6 10 Repair Facility Operable 0 None UAV-031 :Air Vehicle Scenario 11 2 Field 0 🔻 Operating None UAV-032 :Air Vehicle Scenario 🔽 ۶l Select All Air Vehicle Scenario Ŧ Select NLOS-C 🔘 Ву Туре Add Delete Сору Rename Apply Ground Vehicle Scenario Ŧ O By Scenario

Functions for Each Platform Type BAT SYSTEMS

One Team -The Army/DARPA/Industry

Edit Functions

General Aussis Quasase Pation Systems: Edit Functions C2V-001 C2V-002 General Cutsets Success Paths C2V-003 Systems C2V-004 BSV-010 C2V-005 Mobilty **RSV-011 Function ID:** C2V-006 **RSV-012** C2V-007 **BSV-013** ICV-001 **RSV-014** Description: ICV-002 RSV-015 ICV-003 **RSV-016** ICV-004 UAV-001. System State if Yellow . ICY-005 UAV-002 ICV-006 LIAV-003 Operable UAV-004 UAV-005 Functions. UAV-006 Ŧ O Inoperable. C4 Sensing Functions Mobility Mobility Lethality C3 System State if Red Sensing Operable Inoperable Delete. Ċ Add. Add Rename Delete. Copy Select a system to edit its functions. Laboratories Example External Conditions

Flexibility in Treatment of External Conditions

System Functional Status

National Laboratories

FUTURE COMBAT SYSTEMS

System Functional Status

One Team-The Army /DARPA /Inductry _ 🗆 🗵 Current Results Systems Element States Availability States by System Type C2V-001 Name Time-in-State Expected TIS Age Accel. State. ۰ C2V-002 Diesel Engine True 292.85 1,536.84 1.00 1 C2V-003 303.65 4,671.61 2 Fuel System 1.00True C2V-004 C2V-005 3 True 301.26 7,481.27 1.00Instrumentation C2V-006 292.65 2.715.61 1.00 4 MGV Batteries True C2V-007 5 MGV Elec. System 296.57 2.651.20 True 1.00ICV-001 6 Steering System 304.51 2.616.73 True 1.00ICV-002 ICV-003 7 Suspension 302.47 6.135.14 True 1.00ICV-004 8 Transfer Case 300.05 5,732,35 1.00 True ICV-005 Transmission False 0.00 1.00 LICV-006 9 ICV-007 10 Axle 1 True 306.62 6.277.27 1.00ICV-008 11 Axle 2 True 293.22 6.022.82 1.00 ICV-009 12 Axle 3 303.70 5.866.13 1.00True ICV-010 6.255.95 ICV-011 13 Axle 4 True 291.08 1.00 ICV-012 14 Wheel 1L True 293.05 2,347.93 1.00 💌 ICV-013 LICV-014 Name Remaining **Projected Time** Request Replenish Capacity. * ICV-015 Fuel 100.00 0.00 0.00 True ICV-016 NLOS-C-001 2 Water 20.00 0.00 0.00 True NLOS-C-002 NLOS-C-003 NLOS-C-004 Ŧ NLOS-C-005 •

Close

FUTURE COMBAT SYSTEMS

FCS UA/BCT Analyses

FUTURE COMBAT SYSTEMS

Example FCS UA/BCT Analysis

- BCT force structure consisting of 1552 platforms
- Multiple pulses
- Level-5 subsystems on average 265 elements
- Performed optimization and sensitivity analyses

Framework for use in SoS Supportability Assessment Modeling.

Sandia National Laboratories

JSF Autonomic Logistics

X-35C

Enterprise Modeling & Simulation

Support Enterprise Model (SEM)

A Unique Logistics Modeling, Analysis and Decision Support To

Features

- Integrated modeling of worldwide support system
 - Operations
 - Supply/Repair Chain
 - Transportation
- Dynamic changes throughout life-cycle
 - Inventory/Fleet build up and retirement
 - Site activation/closure^{5C}
 - Deployment/surge
- Total support system performance & cost
 - Full on/off-system support activities
 - **Prognostics and Health Management (PHM)**
 - Global optimization across enterprise

Benefits

- Real-time strategic planning support
- **Dramatic risk mitigation**
- Unparalleled resource management flexibility to deal with changing conditions

SEM is a Development Design Tool and a Decision/Planning & Management Tool

Integration of Complex & Dynamic Support Processes **Operating Sites** Support Management Supply **Autonomic Decisions** Information Technologies Forward Supply Regional Repair Operating Site Repair _I Analysis VlaauS **Equipment Manufacturer** Transportation Regional

Support System Analysis

Dynamics of Support Supply Deployed A/C Deliveries & Site Activation Operations Deployment & Surge Operations Repair Autonomic Logistics Decisions Performance and Cost Aircraft Availability & Sorties Spares & Personnel Quantities Performance vs. Cost Trades Deployed

Supply

- Supply

Repair Supply

Operations at Sea

Arbitrary multi-echelon support structure

Unprecedented Data Integration Challenge

SEM Optimization Approach

Unique hybrid optimization process for SEM

- Heuristics:
- Analytic Mixed Integer Programming:
- Solution Refinement
- Problem-Oriented Factors
 - Unprecedented problem scale
 - Roughly 1 million site/part combinations
 - Roughly 20K site/resource combinations
 - Per year of the simulation
 - On the order of 50 million variables in all
 - SEM simulation is stochastic
- <u>Algorithmic Challenges</u>
 - Simultaneous optimization of inventory levels, resource levels, and location of repair facilities
 - Most approaches only consider one of these facets
 - Avoiding "brittle" solutions
 - Algorithms must generate robust solutions insensitive to minor changes in operational parameters
 - Need to characterize the trade-offs between solution robustness and cost, quantify risk

Goal: Arrange spare parts, support equipment and personnel skills across the enterprise to meet target performance at lowest cost