
Testing Net-Centric Systems of Systems:
Applying Lessons Learned from

Distributed Simulation

Presentation to the NDIA Systems
Engineering Conference

October 26, 2005

Doug Flournoy
rflourno@mitre.org

Elizabeth Lee
elee@mitre.org

Robert Mikula
rmikula@mitre.org



Outline

• Motivation
• Net-Centric Computing & Testing Challenges
• Distributed Simulation Computing & Similarities to Net-

Centric Computing
• Distributed Simulation Test Experiences and Tools
• Applicability to Net-Centric Services Testing
• Findings & Recommendations



Motivation

• Over the next several years, DoD will begin fielding
components of the Net-Centric Enterprise Services (NCES)
and Global Information Grid (GIG)
– Testing these Service Oriented Architecture (SOA)-based

capabilities will require new techniques and tools beyond
those used for traditional platform-based systems

• Hypothesis: an approach to testing net-centric systems can
be formed based on successful experiences testing service
oriented distributed simulation systems.
– This briefing presents the findings of a MITRE IR&D

study that examined the potential for simulation test
methods and tools to address net-centric test challenges



Trends in Net-Centric Computing:
The GIG and NCES



Trends in Net-Centric Computing:
Communities of Interest (COIs) and the Blue
Force Tracking (BFT) COI

BFT COI Architecture (from Blue Force Tracking (BFT) Community of Interest (COI) Service
(v1.0); F. Wildes, K. Kelley, and P. Kim; MITRE Working Note: WN 05W0000001, Dec. 2004.)



Challenges Associated with Testing
SOAs: Why is it hard?

• Rapidly Evolving Standards
– limits potential choreography between services

• Rapidly Evolving Core Services
– many still in early prototyping phase

• Organization of Registries
– the right service is out there somewhere, can

you find it?
• Service Pedigree

– once you find a service, can you trust it?



Multiple Levels of Testing will be Required
for NCES and the GIG

• Testing of each component
– Does this node (database, consumer console, service

provider) perform its function properly (as expected and
according to specifications)?

• Testing services and transport components working
together as different subnets
– Do this/these services work in an integrated fashion on

the network as expected?
• Testing each system’s use of the network

– Does this network architecture have bottlenecks and
what is the maximum volume it can handle?

– What is the network performance?
• Testing the end-to-end suite of systems over the network



Services Used in Distributed Simulation:
The High Level Architecture

• Calls for an RTI which brokers data
exchange via 7 service families

• Includes publication &
subscription services

• Offers simulation time clock
services

• Service Oriented Architecture for exchanging data among federated applications
• Simulations, real-world systems and/oror system emulators, support utilities…

Live
Participants

Support
Utilities

Interface

Interfaces to
Live Players

Runtime Infrastructure (RTI)

Simulations

Federation Management Ownership Management
Object Management Data Distribution Management
Time Management Support Services
Declaration Management



Parallels Between the Two Computing
Worlds

Runtime Infrastructure

Distributed Simulation World NCES World

…

HLA Federation

Federate 
A

Federate 
B

Federate 
C

Core Enterprise Services

Community of Interest

COI
Node A

COI
Node B

COI
Node C

GIGSIMEX

…

Test Tools:
• SITH, RTI Verifier, …

Test Tools:
• SOA Test™, TestMaker™



Parallels Between the Two Computing
Worlds

• Lessons learned from testing distributed simulation systems,
including High Level Architecture (HLA) systems, have the potential
to be leveraged to test net-centric systems

– Both HLA and NCES are based on service oriented principles
that have, at their core, a set of common infrastructure services
that provide the basic connection mechanisms necessary for
interoperability

– Both worlds also embrace the concept that some subsets of the
systems need to be tightly coupled together because their
missions are strongly related or they share certain data
exchange requirements

– Both worlds also embrace a larger enterprise view whereby
multiple nodes and multiple system subsets can interoperate as
needed on a loosely coupled basis.



There are striking similarities between HLA
Services and Core Enterprise Services



Operational Differences between HLA
and GIG Computing

• Routing of information exchanges
– HLA: all data must pass through middleware (runtime

infrastructure)
– GIG: data routed “directly” between services

• Most appropriate route between any two services likely to
change over time

• Persistence of participants
– HLA: static set of federates and data exchanges

• Addition or deletion of services during execution is not the
norm

– GIG: can be open-ended
• Dynamic addition or deletion of services is expected during

normal operations



Testing Expertise in the Distributed
Simulation Community

• The simulation community has years of successful experience
testing complex distributed simulation systems, including High
Level Architecture (HLA) systems:
– Testing individual system functionality and performance.
– Testing runtime infrastructure services for correct functionality

and for performance.
– Testing the simulations for their ability to use the runtime

infrastructure services and to publish and subscribe to data as
specified.

– Testing subsets of the simulations working together over the
RTI services.

– Testing the end to end federation for functionality and
performance.



Distributed Simulation Test Tools:
RTI Verifier

• Created to certify compliance of RTIs with HLA Interface
Spec

• RTI Verifier consists of:
– Database of required tests
– Launcher that starts federates and RTI
– Test Controller that stimulates interplay between

federates and RTI
• Key component: Script Definition Language

– For specifying tests



Distributed Simulation Test Tools:
RTI Verifier (cont’d)

RTI Verifier Architecture (Ref. Verifier3 User’s Manual, HLA RTI Verifier Team, MITRE 
Corporation, February 2005.)



Distributed Simulation Test Tools:
RTI Verifier

• RTI Verifier Test
Controller GUI

Status of federates

Test Controller
activities



Distributed Simulation Test Tools:
Simulation Interoperability Test Harness
(SITH)

• Supports development and integration testing of HLA federations
– general purpose tool that allows federate emulation for runtime

data validation, functional testing, and performance testing
• Built around RTI Verifier core. Key add’l features:

– Ability to create unlimited stand-in federates
– Object Script Creator (OSC) for graphically creating/modifying

SDL test scripts

• The SITH uses a sophisticated scripting capability to produce
complex data exchanges, along with a data logging capability, to
run tests that lead to quick diagnosis of problems
– The SITH has been instrumental to the successful development

and testing of several HLA federations



Distributed Simulation Test Tools:
SITH (cont’d)

• SITH GUI



Distributed Simulation Test Tools:
SITH (cont’d)

• Object Script
Creator GUI



Applicability of Simulation Test Tools
to Net-Centric Services Testing
• The following characteristics of the SITH and Verifier can be useful

applied to testing net-centric SOAs:
– GUI- this will be necessary to control the test environment

which the tool will emulate
– Test scripting capability (SDL)- this will be useful for setting up

and repeating parts of the scenario relating to the network
response and service behavior

– Ability to see the entity states in the GUI
– Record entity state changes for analysis
– Run-time data validation capability
– Service or system emulation
– Network flooding capabilities

• However, fundamental differences in underlying core services will
require reworking the SDL to control net-centric services



SOA Test: An Emerging Automated Tool for
Testing SOAs

• WSDL Verification
– XML Validation
– Tests interoperability against WS-I Standards

• Unit Testing
– Verifies web service responses against valid and invalid data sets

• Data sets can be composed of a range of values in legacy data stores
– E.g. Microsoft Excel or Database queries

• Functional Testing
– Scenario based testing using a chain of services
– XML Databank used to map the output of a given web service to

the input of another



SOA Test: An Emerging Automated Tool for
Testing SOAs

• Scripting
– JavaScript, Jython (Java-enabled Python)

• Security
– Message layer security

• Username or SAML Tokens
– Penetration testing

• SQL Injections
– Passing SQL Query Strings as parameters to the Web Service

• Parameter fuzzing
– Unbounded parameters leading to buffer overflow or explicit error

messages

– XML Encryption and Signature



SOA Test: An Emerging Automated Tool for
Testing SOAs

• Regression testing
– Automated testing in continuous integration environments
– Evaluate trends over time

• Load testing
– How do multiple users affect timeliness, content



Challenges

• Number and volatility of associated standards
– E.g. Web services with attachments must account for:

• Soap with Attachments, MIME, DIME, MTOM Recommendations

• Automated failover

• Federated registries

• Evaluation of service pedigree

• Semantic interoperability



Findings and Recommendations

• Significant overlap between HLA and GIG operations
warrants closer look at simulation test tools and approaches
– Examined SITH due to documented successes and

extensible software design
• Recommend an exploratory prototype that reuses much of

SITH for net-centric testing purposes
– Replace SITH SDL with a new scripting language that

leverages web services standards (WSDL, BPEL4WS)
• Apply the new SITH-like application first to interoperability

testing of small groups of services
– Then expand use for performance and behavior testing of

larger groups of services in more complex internet-like
environments



Contact Us

Doug Flournoy
rflourno@mitre.org
(781) 271-2774

Elizabeth Lee
elee@mitre.org
(703) 983-2692

Rob Mikula
rmikula@mitre.org
(703) 983-7168


