

Is a Test Anchor Program Necessary?

- Background and History
- Determining Anchor Capacity
- Investigation and Test Anchor Program
- Summary

Background and History

CANTON LAKE LOCATION

CANTON DAM

One Corps Serving The Army and the Nation

CANTON DAM

One Corps Serving The Army and the Nation

CANTON DAM PROJECT DESCRIPTION

- Rolled Earthfill Embankment with a Length of 15,140 ft. and max. height of 73 ft.
- Gate Controlled Concrete Chute Spillway with 16 40 ft. wide by 25 ft. high Tainter Gates with a Total Capacity of 274,000 cfs.
- Outlet Works Consists of 3 7 ft. wide by 12 ft. high sluice gates.
- Downstream Channel Capacity is Approx. 1000 cfs.

CANTON DAM PERTINANT DATA

•	Top of Dam	1648.0
•	Top of Flood Control Pool and	
	Top of Spillway Gates	1638.0
•	Top of Conservation Pool	1615.4
•	Pool Restriction	1626.0

CANTON DAM DAM SAFETY ISSUES

- · HYDROLOGIC DEFICIENCY
- · SEISMIC DEFICIENCY
- SEEPAGE DEFICIENCY
- SPILLWAY STABILITY

FOUNDATION MATERIALS

- PERMIAN RED BEDS

- RUSH SPRINGS SANDSTONE
- DOG CREEK SHALE
 - COMPACTION SHALE
 - POORLY INDURATED
 - GYPSUM LAYERS
 - SOFT LAYERS
- BLAINE FORMATION
 - COMPACTION SHALE
 - 2 MASSIVE GYPSUM/ANHYDRITE LAYERS

DOG CREEK SHALE US Army Corps STRENGTH CHARACTERISTICS

- OVERCONSOLIDATED
- DILATES WHEN SHEARED (AT LOWER CONFINING PRESSURE)
- LOWEST STRENGTHS 20-30 FEET, OR 1570-1580 ELEVATION, AND **BELOW 50 FEET**
- HIGHEST STRENGTHS BETWEEN 30 AND 40 FEET

DATA FROM ALL SHEAR TESTS

US Army Corps of Engineers

SHEAR STRENGTH, TSF
One Corps Serving The Army and the Nation

TECHNICAL CONCERNS

- WEAK LAYERS IN FOUNDATION
 - GYPSUM SEAMS
 - OTHER SOFT SEAMS
- DESIGN SHEAR STRENGTH
 - USE OF COHESION
- DRAINAGE
 - 50 PERCENT EFFECTIVE
 - 0 PERCENT EFFECTIVE

LISTING OF SAFETY FACTORS

•	1999	0	25	100%	0.55
•	1999	0	25	50%	0.88
•	2004	0	25	100%	0.50

Determining Anchor Capacity

ANCHOR DESIGN LOAD FORMULA

$$\mathbf{P} = \mathbf{\tau_w^*L_b^*\pi^*d}$$

P = design load for the anchor

 $\tau_{\rm w}$ = working bond stress along the interface between rock and grout

 $\tau_{\rm w} = 50\%$ of the ultimate bond stress

 L_b = bond zone length

d = diameter of drill hole

RECOMMENDED BOND STRESS VALUES FROM PTI

ROCK	AVERAGE ULTIMATE BOND STRESS-ROCK/GROUT (PSI)
Granite and Basalt	250 - 450
Dolomitic Limestone	200 - 300
Soft Limestone	150 - 200
Slates & Hard Shales	120 – 200
Soft Shales	30 – 120
Sandstones	120 - 250
Weathered Sandstones	100 – 120
Chalk	30 – 155
Weathered Marl	25 - 35
Concrete	200 – 400

Table 6.1, Recommendations for Prestressed Rock and Soil Anchors, PTI, 1996

TEST ANCHOR PROGRAM PHASE I CORE STRENGTHS

Minimum = 120 psi

Maximum = 1,040 psi

One Third = 330 psi

Median = 420 psi

Average = 456 psi

One Corps Serving The Army and the Nation [.]

TEST ANCHOR PROGRAM PHASE II CORE STRENGTHS

Minimum = 50 psi

Maximum = 860 psi

One Third = 300 psi Median = 440 psi

Average = 460 psi

TEST ANCHOR PROGRAM PHASE I & II SUMMARY

- Ultimate Bond Stress = 10% of the Unconfined Compressive Strength of the Rock
- Minimum Value = 5 to 12 psi
- One Third Value = 30 to 33 psi
- Median Value = 42 to 44 psi
- Average Value = 46 psi
- Maximum Value = 86 to 104 psi

of Engineers

TEST ANCHOR PROGRAM LAB BOND TESTS

Boring Maximum Bond Maximum Bond Boring Stress (psi) Stress (psi) BL-1 102 BR-4 104 BL-1 57 **BR-4** 233 BL-2 176 81 BR-5 84 BL-2 BR-5 62 141 154 BL-2 **BR-6** BL-3 98 **BR-6** 65 BL-3 76 **BR-6** 300

Minimum = 57 psi

Maximum = 300 psi

One Third = 80 psi

Average = 109 psi

Median = 100 psi

of Engineers

TEST ANCHOR PROGRAM PHASE I PULLOUT TESTS

Boring	Bond Zone Length (ft)	No. of Strands	Percent of Design Load (%)	Bond Stress (psi)
A-1LA	15	7	118	63
A-1RA	15	7	165	97
A-3L	15	7	160	94
A-3R	15	7	155	91
A-2L	15	16	188	221
A-2R	15	16	190	224
A-5L	15	16	188	221
A-5R	15	16	190	224
A-4L	40	16	133	83
A-4R	40	16	133	83

No anchors failed during pullout tests

Investigation and Test Anchor Program

INVESTIGATION AND TEST PROGRAM

- Two phase test program required due to lack of funding
- Phase I abutment drilling
 - 6 core holes
 - 8 anchor pullout tests
 - 2 anchor creep tests
- Phase II spillway drilling
 - 4 core holes
 - 2 full scale anchor tests
- Awarded task orders for investigations and test anchors to MACTEC (Prime) and Hayward Baker (Sub)

- 3 core holes on each side of the spillway
 - 2 to 140 feet
 - 1 to 180 feet (top of gypsum)
- 2 test anchors on each side of spillway
 - 105 and 140 feet deep
 - 6 inch diameter hole
 - 7 strand tendon instrumentation
 - 15 foot bond zone
 - Perform pullout test to failure
 - Could not fail anchors

of Engineers

TEST ANCHOR PROGRAM PHASE I - INVESTIGATION

TEST ANCHOR PROGRAM PHASE I - INVESTIGATION

One Corps Serving The Army and the Nation $^{\cdot}$

of Engineers

TEST ANCHOR PROGRAM PHASE I - INVESTIGATION

One Corps Serving The Army and the Nation

TEST ANCHOR PROGRAM PHASE I - INVESTIGATION

FINDINGS

- Original boring logs indicated caved material
- Caved material turned out to be the result of dissolution and collapse
- Noticeable increase in core recovery, RQD, and strength of core below 90 feet
- Rock dips slightly to the southwest

US Army Corps of Engineers

US Army Corps of Engineers

TEST ANCHOR PROGRAM PHASE I REVISED

- 2 test anchors on each side of spillway
 - 105 feet deep (one grouted and one not grouted)
 - 6 inch diameter hole
 - 16 strand tendon
 - 15 foot bond zone
 - Perform pullout test to failure
- 2 test anchor on each side of spillway
 - 105 feet deep
 - 6 inch diameter hole
 - 16 strand tendon with instrumentation
 - 40 foot bond zone
 - Conduct performance test and creep test

of Engineers

TEST ANCHOR PROGRAM PHASE I REVISED

TEST ANCHOR PROGRAM PHASE I REVISED

TEST ANCHOR PROGRAM PHASE I REVISED

TEST ANCHOR PROGRAM PHASE I REVISED

TEST ANCHOR PROGRAM PHASE I REVISED

TEST ANCHOR PROGRAM PHASE I REVISED

Canton Dam, A4 Left Load Test - Load Per Depth in Bond Zone

Tensmeg Strain Gage ID and Depth from Top of Bond Zone

TEST ANCHOR PROGRAM PHASE I REVISED

US Army Corps of Engineers

TEST ANCHOR PROGRAM PHASE II

- Core 4 investigation holes in spillway to an elevation of 1460
 - Collect and test samples for strength and consolidation
- 2 production anchors at gate 16 in existing spillway
 - One 32 strand anchor drilled at 18.4° to elevation 1470
 - One 28 strand anchor drilled at 30.0° to elevation 1470
 - 12 inch diameter hole
 - 40 foot bond zone
 - Conduct performance test and creep test

ANCHOR INVESTIGATION PHASE II

ANCHOR INVESTIGATION PHASE II

ANCHOR INSTALLATION PHASE II

One Corps Serving The Army and the Nation

ANCHOR INSTALLATION PHASE II

ANCHOR INSTALLATION PHASE II

One Corps Serving The Army and the Nation

ANCHOR INSTALLATION PHASE II

One Corps Serving The Army and the Nation

ANCHOR INSTALLATION PHASE II

One Corps Serving The Army and the Nation

ANCHOR INSTALLATION PHASE II FINDINGS

- Weir access is difficult
 - Slick surface
 - Tight workspace
 - Load limit on spillway bridge
- Continuous flow of cuttings is required
 - Falling cuttings blocked hole and drill tools
- Hole will cave in 12 to 24 hours
 - Duplex type casing would be ideal but none exists for this size of hole
- Control elongation of corrugated pipe
- Drill one hole and install corrugated pipe in that hole before starting another one

ANCHOR INSTALLATION PHASE II FINDINGS

- Stage grout to avoid buckling corrugated pipe
- Measure top of grout accurately to avoid clogging of other grout tubes
- Consider single stage vs. two stage grouting
- Label grout and flush tube adequately

ANCHOR DESIGN

CANTON DAM SPILLWAY STABILITY

Summary

TEST ANCHOR PROGRAM SUMMARY

Ultimate Bond Stress Values

- From PTI Table = 30 to 120 psi
- From Unconfined Compressive StrengthTests = 30 to 45 psi
- From Lab Bond Tests = 80 to 110 psi
- From Pullout Tests = 100 to 220 psi
 - No anchors failed during pullout test
- Full scale anchor tests loaded to 133% of design load = 83 psi working bond stress

TEST ANCHOR PROGRAM SUMMARY

- Total force required for weir section = 1,550 kips
 - 12 anchors would be required for an ultimate bond stress of 30 psi
 - 2 anchors are be required for an ultimate bond stress of
 120 psi
- Total force required for pier section = 1,830 kips
 - 14 anchors would be required for an ultimate bond stress of 30 psi
 - 2 anchors are be required for an ultimate bond stress of 120 psi

TEST ANCHOR PROGRAM PHASE I & II SUMMARY

- Phase I
 - Cost approximately \$700,000
 - Reduced the number of anchors from over 400 to 112
 - Cost savings of over \$6,000,000
- Phase II
 - Cost approximately \$800,000
 - Reduced the number of anchors from over 112 to 64
 - Cost savings of over \$2,000,000
- Total cost of \$1,500,000
- Total savings over \$8,000,000
- Return on the investment of more than 5 to 1

SPILLWAY STABILITY

CANTON LAKE

Is a Test Anchor Program Necessary?

It certainly was for us

Some considerations if you are thinking about a test program

- Consider the total load required per monolith
- Consider the type of rock
- Consider the configuration of the structure

SPILLWAY STABILITY CANTON LAKE

Dam Safety Assurance Project Is a Test Anchor Program Necessary?