

Mississinewa Dam Foundation Rehabilitation

Jeff Schaefer

Geotechnical Regional Technical Specialist
U.S. Army Corps of Engineers
Louisville District

Constructed – Mid to Late 1960's

 Total length 	8100 feet
 Total height 	140 feet
Crest elevation	797
• Spillway elevation	779
 Summer Pool 	737 *
• Winter Pool	712

Geology

Glacial Deposits: 10-70 feet Silty clay overlying

sands and gravels

Liston Creek Fm: 0-70 feet Thinly bedded, cherty,

crystalline limestone

prone to solutioning.

Mississinewa Fm: > 30 feet Thinly bedded

argillaceous limestone

Typical geologic cross-section along the dam centerline.

Adapted From Indiana Geological Survey, Caves of Indiana by Richard L. Powell

Solution feature on left abutment side of conduit excavation

View of solution channel, located at dam station 51+00, on left abutment side of conduit excavation.

Features of Interest for the Mississinewa Dam Project

1988

Operations Personnel Identify Guardrail Deflections

Change In Elevation From Original Elevation

SI-1 (station 40+25), approximately elevation 758

View in May 1995

042.7

View in June 1999

June 1999 view of SI-2 (station 40+25) at approximately elevation 758

Settlement Mechanism Foundation Piping

Cut-off Wall

A cut-off wall was selected as the only practical and certain method of repairing the foundation for the dam. The cutoff wall would extend to depths of 180 feet and up to 80' into rock.

Typical geologic cross-section along the dam centerline.

Construction Contract

RFP Performance Specification

Requirements Specified & Methods Restricted

Methods Selected by Contractor

Technical Factors More Important Than Price

Contract Award

All 3 Proposed Clamshell/ Hydrofraise Backup Method – Chisel Supplement

Award to Bencor/Petrifond JV for \$29,800,000 September 2000

Site Map Showing Major Areas of Interest

Geotechnical and Dam Safety Section
MISSISSINEWA DAM

Cable-Clam Bucket MISSISSINEWA DAM

Test Section

Typical geologic cross-section along the dam centerline.

Test Section

Attempts to Excavate Rock in Test Section Resulted in Sudden Complete Slurry Loss

Test Section

Change To Construction Approach

Pregrouting Required to Enable Cutoff Wall Construction

RFP type selection of the Grouting Subcontractor (ACT)

Grouting ITR by Dr. Donald Bruce

Sample Extrusion

Rotosonic Samples

Two High Speed/High Volume Grout Plants

Grout Header Controls

IntelliGrout Operator's Station

Typical Void Refusal, Refined "D Mix"

Test Section

B Line Master Drawing

Grout Line Layout MISSISSINEWA DAM

Downstream

Upstream

us Army Corpe of Engineers Tremie Concrete Placement Louisville District Placement

Test Section

Test section is complete.

Pregrouting was successful. NO SLURRY LOSSES

An optimum program for production was developed.

Drilling for grouting will provide a preview to problems.

Cost growth due to grouting is unknown.

Actual quantities required to treat features will govern.
\$10 - 15 Million (Likely)

\$25 Million (Worst Case)

Production Grout Hole Alignment

Geotechnical and Dam Safety Section

MISSISSINEWA DAM

Crane Mod For Deep Section

Extended Hydromill
June, 2004
Dam Foundation Remediation
Contract No. DACW27-01-C-0018

Crane Boom Failure

Crane Fire

Geotechnical and Dam Safety Section MISSISSINEWA DAM

Mill Recovery

Bencor-Petrifond, J.V.

Mill Retrieval With Dywidag Bars September, 2004 Dam Foundation Remediation Contract No. DACW27-01-C-0018

U.S. Army Corps of Engineers

Mill Recovery

Mill Recovery

BENCOR
PETR FOND

Mill Removal From Panel P-121 September, 2004 Dam Foundation Remediation Contract No. DACW27-01-C-0018

Mill Recovery

Additional Mills Mobilized

Soil Cutting Wheels

Bencor-Petrifond, J.V.

BENCOR
PETR FOND

Hydromill Soil Wheels December, 2004 Dam Foundation Remediation Contract No. DACW27-01-C-0018

Mill Fest

Bencor-Petrifond, J.V.

Hydromills On Platform
December, 2004
Dam Foundation Remediation
Contract No. DACW27-01-C-0018

U.S. Army Corps of Engineers

Final Wall Profile

Quality Control

- Bentonite Testing
- Panel Embedment & Continuity
- Panel Verticality
- Concrete Testing
- Verification Drilling
- Dam Instrumentation

Bentonite Testing Equipment

Pressure Filtration Machine

Marsh Funnel Test

Density Test

Geotechnical and Dam Safety Section

US Army Corps of Engineers Louisville District

Pressure Filtration Testing MISSISSINEWA DAM

US Army Corps of Engineers
Louisville District

Sand Content Testing MISSISSINEWA DAM

Cuttings Observations for Panel Embedment

Verticality Checks

- Hydromill Inclinometer
- Jean Lutz® Inclinometer/Gyroscope
- Plumb Bob
- Koden® 682/684

Jean Lutz® Plot MISSISSINEWA DAM

Geotechnical and Dam Safety Section MISSISSINEWA DAM

of Engineers Louisville District Koden® Verticality Machine

Koden® Plot

Geotechnical and Dam Safety Section MISSISSINEWA DAM

Plumb Bob Reading Geotechnical and Dam Safety Section MISSISSINEW A DAM

US Army Corps of Engineers
Louisville Dis

Geotechnical and Dam Safety Section Plumb Bob Results ation, Mississingwa Dam Geotechnic Geotechnic MISSISSINEWA DAM

Bencor-Petrifond, JV Dam Foundation Remediation, Mississinewa Dam

	Panel P-11 - Bite #1 - Verticality - Plumb Bol			
Height of Boom = 46'	Depth (Ft.) Below Guide Wall	Readings at Guide Wall (Inches)	Panel Deviation (Inches)	
	0.00	0.00	0.00	
	20.00	0.00	0.00	
	30.00	0.13	0.21	
	40.00	0.13	0.23	
	50.00	0.38	0.78	
	60.00	0.38	0.86	
	70.00	0.20	0.50	
	80.00	0.20	0.55	
	90.00	0.63	1.85	
	100.00	0.63	1.98	
	110.00	1.00	3.39	
	120.00	1.00	3.61	
	130.00	1.00	3.83	
	140.00	1.00	4.04	
	150.00	1.13	4.79	

	Panel P-11 - Bite #2 - Verticallity - Plumb		
Height of Boom = 35'	Depth (Ft.) Below Guide Wall	Readings at Guide Wall (Inches)	Panel Deviation (Inches)
	0.00	0.00	0.00
	20.00	0.00	0.00
	30.00	0.25	0.46
	40.00	0.63	1.34
	50.00	1.00	2.43
	60.00	1.25	3.39
	70.00	1.38	4.13
	80.00	1.50	4.93
	90.00	1.63	5.80
	100.00	1.75	6.75
	110.00	2.13	8.80
	120.00	2.50	11.07
	130.00	2.13	10.02
	140.00	2.00	10.00
	150.00	1.50	7.93

	Panel P-11 - Bite #3 - Verticallity - Plumb Bob		
Height of Boom = 29'	Depth (Ft.) Below Guide Wall	Readings at Guide Wall (Inches)	Panel Deviation (Inches)
	0.00	0.00	0.00
	20.00	0.00	0.00
	30.00	0.25	0.51
	40.00	0.38	0.89
	50.00	0.76	2.04
	60.00	1.00	3.07
	70.00	1.00	3.41
	80.00	1.00	3.76
	90.00	1.00	4.10
	100.00	0.88	3.89
	110.00	0.88	4.19
	120.00	0.88	4.50
	130.00	0.75	4.11
	140.00	0.75	4.37
	150.00	0.75	4.63

Note: (-) Upstream, (+) Downstream

Concrete Quality Checks

Batch Plant

- Scale Calibration quarterly
- Electronic Moisture meter calibration
- Sieve Analysis on aggregates
- Gradation analysis on aggregates
- Moisture on sand and aggregate
- Fly-ash grain size analysis

Tremie Procedures

- Go-Devil utilized
- Tremie Pipe Embedment
- Chart tremie progress and quantities
 - (in real time)
- Count tremie pipe lengths

of Engineers Louisville District Concrete Quality Testing

During Placement--

- Slump
- Air Content
- Temperature

Verification Drilling

• Purposes:

- Concrete Quality
- Panel Contact/Joint Quality
- Cutoff-Wall---RockBottom Contact

• Techniques:

- 4 inch core for Panels
- 6 inch core for Panel Joints

Verification Drilling Geotechnical and Dam Safety Section MISSISSINEWA DAM

Geotechnical and Dam Safety Section MISSISSINEWA DAM

Panel-Rock Contact

What we don't want! MISSISSINEWA DAM

Geotechnical and Dam Safety Section

US Army Corps Borehole Pressure Testing

Louisville District

Dam Instrumentation

Purposes

- Verify dam integrity
- Check effectiveness of grouting
- Check effectiveness of concrete cutoff wall
- Historical record for future use

Paired Piezometers

US Army Corps of Engineers Louisville District

Geotechnical and Dam Safety Section

Paired Piezometer Plot Plot

PZ-108 Up vs Down (station 39+05)--Mississinewa Project History

What have we learned?

- •Solution Features are worse than expected.
- •Clearly we were in a failure mode, reinforcing the need for remediation.
- •Need for Pool restriction reinforced.
- •Pregrouting is required to control slurry loss.
- •Need to adjust design to field conditions.
- •Cost and Schedule Growth will be governed by Geology.
- •Large Contingencies are required for foundation repair projects.

- Final Price Approx. \$50 Million.
- Most of the cost growth due to pretreatment grouting.
- No milling production issues related to rock strength.

