

RCC Materials Investigation

Portugues Dam RCC Materials Investigation

Outline

- Goals
- Mix Design Parameters
- Materials
- Test Program
- Tests on Laboratory Simulated Lift Joints
- Conclusions

Portugues Dam RCC Materials Investigation

Goals

- Determine behavior/characteristics of potential project materials
- Determine properties for use in design analysis
- Determine mix proportions for use in test fill placement(s)
- Provide information for use in adjusting mixtures during production

Mix Design Parameters

- Workability
 - Vebe Consistency 14 to 20 seconds
 - Entrapped Air Content 1.0%
 - Coarse aggregate proportions and aggregate grading:
 - EM 1110-2-2006, "Roller Compacted Concrete"
 - Sand aggregate volume selected to limit segregation
 - Fine aggregate content:
 - Selected by trial mixes to limit segregation

- Strength

- Compressive Strength Range 3000 to 5000 psi
- Tensile Strength 300 psi +/-

(Design based on potential of materials!)

- Pozzolan

• Targeted 40% cement replacement by volume based on previous experience and "comfort" level of designers.

Materials

- Aggregates: Crushed diorite from government-owned quarry
- Cement:
 - San Juan Cement Co., Type I, San Juan
 - Puerto Rican Cement Co., Type I, Ponce
 - Antilles Cement Co., Type I/II, Aalborg (Denmark)
 - Lone Star Cement Co., Type I/II, (Control)
- Pozzolan:
 - Dolet Hills, Class F
 - Martin Lake, Class F
- Slag:
 - Holnam GGBS, Grade 100, Chicago
- Admixtures:
 - Master Builders WRA, Pozzolith 220N and 100-XR

Materials Investigation Program

- Phase I
 - Establish baseline proportions for RCC mixtures
 - Proportion series of mixes to span 1-year compressive strength of 2000 to 5000 psi (including modulus of elasticity)
 - Proportion series of mixes to evaluate effect of cement and pozzolan type
 - Proportion series of mixes to evaluate use of slag
 - Proportion series of mixes to investigate effect of pozzolan content
 - Proportion series of bedding mortar mixes
 - Perform direct tensile strength tests on "jointed" 6x12-inch cylinders
 - Select "design" mix

Compressive Strength vs W/C (w/40% Dolet Hills Ash)

Compressive Strength vs W/C (Aalborg Cement with varying Ash %)

• Materials Investigation Program

- Phase I Supplemental
 - Perform dry rodded unit weight tests to verify coarse aggregate proportions
 - Proportion series of mixes at varying sand contents to verify sand aggregate content
 - Proportion series of mixes to further investigate use of higher pozzolan contents (60 and 75-percent cement replacement by volume)
 - Proportion series of mixes with varying WRA/Retarding admixture dosage to evaluate effect on time of set
 - Perform sand degradation tests to investigate sand balling anomaly
 - Proportion mix with "clean" sand to evaluate effect on compressive strength and workability (water content)
 - Perform "modified" accelerated cure strength tests to evaluate compressive strength gain of high pozzolan content mixes

- Materials Investigation Program
 - Phase IIa
 - Construct series of panels to investigate direct and splitting tensile strength and biaxial direct shear strength of lift joints
 - Phase II
 - Modulus of Elasticity and Poisson's Ratio Tests
 - Creep and Autogenous Volume Change Tests
 - Adiabatic Temperature Rise Tests (Including Q-drum)
 - Thermal Diffusivity
 - Coefficient of Thermal Expansion
 - Specific Heat
 - Tensile Strain Capacity

Portugues Dam Standard Procedures

Simulated Lift Joints

- Nominal 46 x 72 x 12-inch thick panels
- Constructed in two lifts using varying lift joint treatments
- RCC consolidated using walk-behind vibratory roller
- Core and sawn block samples for direct and indirect tensile strength, bi-axial direct shear strength
- Results intended for use in evaluating effect of fly ash, retardation, joint maturity, fines content

Portugues Dam

2000 °F-hr Joint Maturity with Bedding Mortar

Normal Stress = 100 psi

Portugues Dam RCC
Panel D / B6

Mixture 6d (40% Fly Ash); 2,000 deg F-hr Joint Maturity; With Bedding Mortar
Nominal Normal Stress = 400 psi

Selected Results: BiAxial Direct Shear

	Peak/Initial*
Joint Treatment	Cohesion, psi
Design Mix, 500°F-Hr	266
Design Mix, 2000°F-Hr	275
75% Ash, 2000°F-Hr	139
Design Mix, 2000°F-Hr w/bedding	448
Design Mix, 2000°F-Hr Retarded	408
Design Mix, 2000°F-Hr Clean Sand	316

^{*}Tests at age 90-days

Selected Results: Direct Tensile Strength Tests

	Direct Tensile*
Joint Treatment	Strength, psi
Design Mix, 500°F-Hr	385
Design Mix, 2000°F-Hr	220
75% Ash, 2000°F-Hr	180
Design Mix, 2000°F-Hr w/bedding	345
Design Mix, 2000°F-Hr Retarded	275
Design Mix, 2000°F-Hr Clean Sand	285

^{*}Tests at age 365-days

Conclusions

- The comprehensive test program conducted for the Portugues Dam Project has provided invaluable insight on the behavior and characteristics of RCC and other concreting materials.
- The COE has significant expertise in the design, evaluation and use of RCC. This expertise is readily accessible through the RCC DX and Materials CoP.

Questions?

(Thank You!)