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• Folsom Dam Description• Folsom Dam Description

Introduction

– Design/construction by USACE (1948-1956), transferred to USBR (1956)
– Maximum height of gravity section is 340 ft with a crest length of about 1,400 ft.
– 28 monoliths, 50 ft wide each.
– Main spillway: 5 ogee monoliths, two tiers of 4 outlets. Emergency spillway: 3 flip bucket

monoliths.
– Embankment wrap fill and wing dams
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• Outlet Works Modification Project• Outlet Works Modification Project

Introduction

– Project will increase the river outlet release capacity from 26,000 cubic feet per second to
115,000 cubic feet per second.

– Spillway section modifications basically consist of enlarging the four existing upper tier
river outlets (9.33 ft by 14 ft), constructing two new upper tier river outlets of the same size,
and enlarging the four existing lower tier river outlets (9.33 ft by 12 ft).
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• DSAP Evaluation

– DSAP seismic evaluation completed in 1989.

– Peak ground acceleration (PGA) for the horizontal direction
defined as 0.35g.

– Analyses performed using the computer program EAGD-84,
considering the tallest non-overflow monolith as critical section.
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Previous Stress Analyses

– Different values of foundation modulus
(5.8, 7.9, and 11.0 106 psi) and wave
reflection coefficient (0.75, 0.79, and
0.82) were considered.

– Maximum principal stresses reached
about 870 psi on the downstream face,
near the lower end of the circular
transition.
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• DSAP Evaluation• DSAP Evaluation

Previous Stress Analyses
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• Maximum Credible Earthquake• Maximum Credible Earthquake

Ground Motions

– Event of magnitude 6.5 at a source-to-site distance of 14 km,
on the eastern branch of the Bear Mountains fault zone.

– Horizontal PGA values corresponding to the 50th and 84th

percentile were determined as 0.24g and 0.38g, respectively.

– Vertical response spectrum defined using a period-
dependent scaling factor.
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• Approach• Approach

Response-Spectrum Based Analyses

– 3D GTSTRUDL FE mesh of 50-ft wide dam monoliths.

– Chopra’s simplified procedure used to develop sets of lateral
forces .
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– Horizontal and vertical components
of input motion.

– Peak dynamic responses obtained
by combination using SRSS rule.

– Dynamic responses combined with
static results (monolith weight,
hydrostatic pressures, and uplift).

– Results used for design of
reinforced concrete liners.
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• Chopra’s Simplified Procedure• Chopra’s Simplified Procedure

Response-Spectrum Based Analyses

– Dynamic response can be described by the fundamental mode
of vibration of the dam on rigid foundation rock.

– Mode shape does not take into account foundation flexibility.

– Analysis of fundamental-mode response still a complex
problem because of frequency-dependent interaction
phenomena (dam/reservoir, dam/foundation).

– By defining frequency-independent parameters, an equivalent
SDOF system is used to approximate the dynamic response.

– FE analysis conducted using sets of lateral forces representing
inertial and hydrodynamic actions associated with
fundamental-mode including higher-mode correction.
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Response-Spectrum Based Analyses

Monolith 14
Existing condition

Monolith 14
Modified condition
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• Finite Element Model• Finite Element Model

3D model Fundamental mode shape
T1 = 0.163 sec (f1 = 6.14 Hz)

Response-Spectrum Based Analyses

X

Y

Z

PERIOD = 0.163 SEC.
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• Equivalent Forces – Fundamental Mode• Equivalent Forces – Fundamental Mode

Inertia forces associated with
fundamental mode response

Response-Spectrum Based Analyses

Hydrodynamic forces associated
with fundamental mode response
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• Equivalent Forces – Higher-Mode Correction• Equivalent Forces – Higher-Mode Correction

Inertia forces associated with
higher-mode contributions

Response-Spectrum Based Analyses

Hydrodynamic forces associated
with higher-mode contributions
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• Cases Analyzed• Cases Analyzed

Response-Spectrum Based Analyses
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• Evaluation of Peak Stresses• Evaluation of Peak Stresses

Envelope of maximum normal
stresses Syy (psi) at z = 25 ft

Response-Spectrum Based Analyses

– Results for Monolith 14 showed
peak vertical tensile stresses
mostly within the apparent
dynamic tensile strength (700
psi)

– Stress concentration (1,140 psi)
at the upstream heel but stress
values drop sharply within 10 ft.

– The results for Monolith 21 also
indicated stress concentration at
the upstream heel (890 psi).
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• Approach
– Seismic stress analyses were conducted on 2D FE models of

monoliths 14 and 21, subject to ground motion time histories
representative of the MCE.

– Analyses performed with the computer program EAGD-84.

– Program developed at the University of California at Berkeley
(Fenves and Chopra, 1984) to evaluate the seismic response of
two-dimensional sections of concrete gravity dams taking into
account

� Dam-water interaction

� Dam-foundation rock interaction

� Energy absorption at the bottom of the reservoir
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Time History Analyses
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• Program EAGD-84• Program EAGD-84

Time History Analyses

– Reservoir modeled as fluid
domain of constant depth
and infinite length along
the upstream direction.

– Energy absorption
associated with reservoir
bottom materials quantified
by wave reflection
coefficient (α).
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viscoelastic half-plane.
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• Maximum Credible Earthquake• Maximum Credible Earthquake

Ground Motion Time Histories
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• Spectral Matching• Spectral Matching

Ground Motion Time Histories

Comparison of 5%-damped horizontal
response spectra for truncated (30 sec)

time histories
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• Response Spectrum Compatibility• Response Spectrum Compatibility

Ground Motion Time Histories

– Simple scaling approach:

At least three time-histories for each
component of motion should be
considered.

– Spectrum-matching approach:

Linear response is mainly determined
by the spectral content of the time-
history. If a very close fit to the target
spectrum can be obtained, a single
time-history for each component may
be sufficient.

– Simple scaling approach:
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spectrum can be obtained, a single
time-history for each component may
be sufficient.



U.S. Army Engineer Research and Development Center
US Army Corps
of Engineers

• 2D FE Models (EAGD-84)• 2D FE Models (EAGD-84)

Time History Analyses

Finite-element mesh for
spillway Monolith 14

Finite-element mesh for
non-overflow Monolith 21
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• 2D FE Models (SAP2000)• 2D FE Models (SAP2000)

Time History Analyses

Finite-element mesh for
spillway Monolith 14

Finite-element mesh for
non-overflow Monolith 21

Massless Foundation Model

Massless Foundation Model

Westergaard’s
Added Mass

Westergaard’s
Added Mass
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• Comparison of Natural Periods (2D Models)• Comparison of Natural Periods (2D Models)

Time History Analyses

Rigid Flexible Rigid Flexible
1 0.160 0.222 0.157 0.214
2 0.071 0.139 0.070 0.107
3 0.066 0.098 0.065 0.092
4 0.044 0.054 0.043 0.052
5 0.032 0.041 0.031 0.039

EAGD84 SAP2000
PERIOD [sec]PERIOD [sec]MODE

Rigid Flexible Rigid Flexible
1 0.184 0.221 0.184 0.215
2 0.083 0.101 0.083 0.106
3 0.059 0.088 0.059 0.088
4 0.044 0.056 0.044 0.058
5 0.029 0.037 0.029 0.036

SAP2000
PERIOD [sec]

EAGD84
MODE PERIOD [sec]

Monolith 14
(Empty reservoir)

Monolith 21
(Empty reservoir)

3D Model: T1 = 0.163 sec
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• Peak Values of Maximum Principal Stress• Peak Values of Maximum Principal Stress

Time History Analyses

Monolith 21
San Fernando
Earthquake
Reservoir pool
elevation 466 ft

757 psi

674 psi
665 psi

X Y Time σmaxCase Location
[ft] [ft] [sec] [psi]

+H Base (Heel) 4.85 8.75 7.8 603

+H Upstream 20.53 196.31 3.4 581

+H Downstream 61.87 196.31 7.9 604

-H Base (Heel) 4.85 8.75 3.5 606

-H Upstream 20.53 196.31 7.9 597

-H Downstream 63.64 192.92 3.4 593

+H+V Base (Heel) 4.85 8.75 8.5 571

+H+V Upstream 20.53 196.31 3.4 613

+H+V Downstream 61.87 196.31 5.4 598

+H-V Base (Heel) 4.85 8.75 7.8 757

+H-V Upstream 20.53 196.31 3.9 665

+H-V Downstream 63.64 192.92 7.9 641

-H+V Base (Heel) 4.85 8.75 3.5 717

-H+V Upstream 20.53 196.31 7.9 623

-H+V Downstream 61.87 196.31 3.9 674

-H-V Base (Heel) 4.85 8.75 5.4 618

-H-V Upstream 20.53 196.31 7.9 579

-H-V Downstream 60.45 199.25 5.5 616
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• Stress Time Histories and Stress Contours• Stress Time Histories and Stress Contours

Time History Analyses
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• Comparison with Response Spectrum Approach• Comparison with Response Spectrum Approach

Time History Analyses

Distribution of maximum values of dynamic normal
vertical stress along upstream face
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Monolith 21

THA

RSA

RSA → Maximum stress estimate
obtained with the response spectrum
approach considering horizontal and
vertical input ground motion.

THA→ Peak value of dynamic stress
time history considering both
components of the Imperial Valley
Earthquake (combination –H/-V).
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• Comparison with Response Spectrum Approach• Comparison with Response Spectrum Approach

Time History Analyses

Distribution of maximum values of dynamic normal
vertical stresses along upstream face
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Summary

– Dynamic stress analyses of concrete gravity sections of Folsom
Dam conducted using different approaches and considering
horizontal and vertical ground motion components.

– Modified (expanded) version of Chopra’s single-mode response-
spectrum based procedure implemented for 3D FE analyses.

– 2D FE time history validation using EAGD-84, whose analytical
formulation is consistent with the previous procedure
(hydrodynamic effects, reservoir-bottom absorption, dam-
foundation interaction).

– Some regions with tensile excursions above the assumed
strength threshold (700 psi) were identified in Monoliths 14 and
21 but they were confined to areas with significant stress
gradients and limited to the region immediately near the heel.

– Dynamic stress analyses of concrete gravity sections of Folsom
Dam conducted using different approaches and considering
horizontal and vertical ground motion components.

– Modified (expanded) version of Chopra’s single-mode response-
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– Some regions with tensile excursions above the assumed
strength threshold (700 psi) were identified in Monoliths 14 and
21 but they were confined to areas with significant stress
gradients and limited to the region immediately near the heel.
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