U.S. Army Corps of Engineers St. Louis District Festus/Crystal

 Project protects the adjacent cities of Festus and Crystal City, MO., including the sewage treatment plant and a major highway connecting the cities.

 The project will keep flood events, such as the Great Midwest Flood of 1993, from impacting life in these towns.

- Project provides Urban Design Level of Protection (500 year flood).
- Only highway between Festus and Crystal City subject to flooding.
- Only sewage treatment plant for a growing area with a present population of 40,000.
- Multiple project features were constructed.
- Total Project Cost \$13,400,000.

EARTHEN LEVEE

RAILROAD CLOSURE STRUCTURE

PUMP STATION WITH MSE WALL

MECHANICALLY STABILIZED WALL AND EMBANKMENT

Pump Station Overview

- 120 cfs Total Pump Station Capacity
- 2 Flygt Submersible Pumps
- 505 acre Ponding Area
- 2 − 8' Wide x 8' High Box Culverts with Cast Iron Sluice Gates
- Pump Station Switchgear and Controls Located Inside the Existing Sewage Treatment Plant
- Station Operates at 480 VAC
- Automatic Sluice Gate and Pump Operation Using Programmable Logic Controller
- Total Pump Station Construction Cost \$3,000,000

Pump Station Plan & Profile

Pump Station Sump Plan

Pump Station Profile

Pump Station/Gravity Drain

INLET STRUCTURE

Pump Station/Gravity Drain

OUTLET STRUCTURE

Pump Station/Gravity Drain

BOX CULVERT CONSTRUCTION

Pump Station Construction

PUMP STATION STRUCTURE AND WING WALLS

Gravity Drain Features

SLUICE GATE WALL THIMBLE & GATE SLIDE

Gravity Drain Box Culvert

SLUICE GATE SLIDE & GATE HOIST

MSE Wall Installation

MSE WALL FOUNDATION & EMBANKMENT

MSE Wall Installation

MSE EMBANKMENT & BLOCK WALL

- Flygt PL-7081
- Rated for 27,000 gpm @ 13.7 ft. TDH
- Pump Speed 885 RPM
- Pump Tube Diameter 40 in.
- Motor Size 200 Hp
- Motor Voltage 480 V
- Rated Current 242 amp

FACTORY TESTING IN SWEDEN

PUMP DISCHARGE TUBE

PUMP DISCHARGE TUBE

"DUCK-BILL" DISCHARGE INSTEAD OF FLAP GATE

PUMP INSTALLATION

SUBMERSIBLE PUMP INSTALLATION

"GRIP-EYE" SYSTEM TO SUPPORT POWER CABLES

SIDE POWER CABLE ENTRANCE INSTEAD OF THRU
THE TOP OF THE TUBE

Electrical Controls

ELECTRICAL EQUIPMENT INSTALLATION

Automatic Operation

- PLC automatically operates two gravity flow sluice gates at programmed water levels (using motor actuated gate hoists).
- Pressure transducers measure water level in four locations: Inlet, Outlet, Sump No. 1 and Sump No. 2.
- Two transducers are installed at each location to monitor for accuracy of measurements. PLC Logic detects open circuit or out of range.
- PLC starts and stops the pumps based on the water level at the Inlet Structure.
- PLC stores the run time of each pump in memory.
- Manual (Hand) Operation for sluice gates and pumps.
- Low Water Cut-off Float for Pumps and Float Operated High Water Sluice Gate Back-up Operation

Monitoring & Control Systems

Sluice Gate Controller

Pump Control Panel

Monitoring & Control Systems

Pump & Sluice Gate Status Screen (MAGELIS Screen)

Monitoring & Control Systems

Digital Water Level Display

Inlet Transducers

Pump & Motor Protection

Pump/Motor Monitoring Device (Flygt CAS Unit)

Solid State Overload Relay

Auto Dialer

Provisions for Back-Up Generator

Generator Connection Access Panel

Dedicated Circuit Breaker for Generator

Failures and Alarms

- PLC monitors the CAS Unit and Solid State Overload Relay located in the motor starter. The CAS Unit instruments the following:
 - Stator Temperature
 - Stator Leakage

- Bearing Temperature
 Motor Junction Box Leakage
- The PLC tries to start a pump for 30 seconds. If the pump does not start, a "Failure to Start" alarm is generated.
- Failures trigger the audible alarm located on the PLC Enclosure to alert an onsite operator.
- PLC also tries to start the second pump.
- If personnel do not acknowledge the alarm within 10 minutes, the PLC activates the autodialer.

Presenter

Stephen G. Farkas, P.E. Chief, Struc/Arch/Mech/Elec Section

CEMVS-ED-DA

314-331-8264

stephen.g.farkas@mvs02.usace.army.mil