

HEC-ResSim 3.0

Enhancements and New Capabilities

Fauwaz Hanbali August 4, 2005

HEC-ResSim Program

- HEC Next Generation Software
- Real-time and planning application for water control management systems
- V2.0 Public Release (October 2003)
- New Capabilities ~ upcoming V3.0

Standard Capabilities

- Networked Reservoir and Flow Routing
- Guide Curve and Zone-Based Reservoir Operation
- At-site Release Function Rules
- Downstream Control Function Rules
- Parallel and Tandem System Operation
- Incidental and Scheduled Hydropower
- Emergency Gate Operation
- Release Overrides

Network Elements

- Reservoirs mass balance, release decision
- Reaches flow routing, losses
- Diversions withdrawals, routing, losses
- Junctions control points and connections (link reservoirs, reaches, diversions, plus local inflows)

Simulation & Analysis

MultipleAlternatives

Simulation Control

Simulation: 01 Jan 1982, 1200 Lookback: 01 Jan 1982, 0200 End: 04 Feb 1982, 1700

1982.01.01-1200

Alt. A

Alt. B

Alt. C

🗸 Alt. [

New Capabilities

- Period average flow limit criteria
- ❖ If-then-else
- User-scripted State
 Variables
- User-scripted Rules
 - Report Builder

- Outlet Outages
- Release Allocations
- System Hydropower
- Pump-back Storage

Period Average Flow Limits

 New option for flow limit goals as daily or weekly period averages

 Fluctuating flows are allowed for intervals within period, but period average requirement is satisfied

IF-THEN-ELSE

- 🧖 Top of Dam
- 🙇 Top of Surcharge
 - Induced Surcharge
 - max Rel at Dam = 2000 cms
- 🙇 Top of Flood Control Pool
 - Induced Surcharge
 - max Rel at Dam = 2000 cms
- 🔼 Top of Conservation Pool
 - Max Rel at Dam = 400 cms
- { } Basin Conditions
 - ☐ → IF (Drought)
 - Min Rel at Dam = 20 cms
 - in Min Rel for Downstream = 40 cms
 - ELSE IF (Normal)
 - im Min Rel at Dam = 50 cms
 - Min Rel for Downstream = 75 cms
 - ➡ ELSE (Wet)
 - Seasonal Rel for Wetland
 - im Min Rel at Dam = 50 cms
 - Min Rel for Downstream = 75 cms
- 🙇 Top of Buffer Pool
 - in Min Rel at Dam = 20 cms
- 🙇 Top of Inactive Pool

- Operational constraints with conditional statements
- Compound conditions
- Nested if-then-else

current inflow < 85% of Average

or current inflow < 50 cms

current inflow > 85% of Average

And current inflow < 120% of Average

current inflow > 120% of Average

And current Date > 20 Mar 2005

And current Date < 15 Apr 2005

State Variable

- User-defined variable whose value ResSim computes by executing a user-created script at every time step throughout the simulation period
- Computation of non-standard model variables, such as:
 - □ Basin wetness
 - □ Drought level
 - □ System storage
- Scripting in Jython using an editor with access to standard ResSim model variables and methods

State Variable Editor

User-Scripted Rule

- A rule that can be added and prioritized in a certain operation set
- Defining complex criteria that depends on various parameters, conditions, and special calculations
- Scripting in Jython using an editor with access to standard objects for ResSim model variables and methods

Scripted Rule Editor

Example Script

```
from hec.rss.model import OpRule
from hec.rss.model import OpValue
def runScript(currentRule, network, currentRunTimeStep):
  # create new Operation Value (OpValue) to return
  opValue = OpValue()
  # set the type and value of the OpValue
  inflowTS= network.getTimeSeries("Reservoir","Friant", "Pool", "Flow-IN")
  inflow = inflowTS.getCurrentValue(currentRunTimeStep)
  if inflow > 5000:
       opValue.init(OpRule.RULETYPE_SPEC, inflow)
  else:
       opValue.init(OpRule.RULETYPE_MAX, 5000)
  # return the OpValue
  return opValue
```


Outlet Outages

- Capacity Override factor (0.0-1.0)
- Maintenance or offline schedule
- Repeatable outage interval
 - None
 - Daily
 - Weekly
 - Monthly
 - Yearly

Release Allocations

- Allocation options for releases across multiple outlets:
 - Balanced releases across multiple outlets (weighted distribution of releases)
 - Sequential operation of outlets (prioritized sequence of release)
 - **Stepped** percent of allocation as function of total release (combination of balance and sequential allocation schemes)

System Hydropower

Storage and energy balance to achieve system-wide targets

 System generation requirement for a group of reservoirs

Pump-back Storage

- Downstream source reservoir
- Pumping criteria defined at upper reservoir
 - Target fill level
 - Daily pumping schedule

Report Builder

- User-defined reports
- Time-series catalog & filter
- Column, row, & report block builder
- Column math operation & summary statistics

Recap of Enhancements

- Additional power and flexibility for defining reservoir operating criteria
- Extra control for outlet release allocations
- Expanded hydropower capabilities for system generation and pump-back operation
- User-defined Reports

Version 3.0 Public Release ~ Winter 2005

Contacts

- Joan Klipsh, HEC-ResSim Program Manager
 Water Management Systems Division, HEC
 Joan.D.Klipsh@usace.army.mil
- Fauwaz Hanbali, Hydraulic Engineer
 Water Management Systems Division, HEC
 Fauwaz.U.Hanbali@usace.army.mil

HEC Website http://www.hec.usace.army.mil

