Developing Reservoir Operational Plans to Manage Erosion and Sedimentation during Construction – Willamette Temperature Control, Cougar Reservoir 2002-2005

Patrick S. O'Brien, PE CENWP-EC-HY patrick.s.o'brien@usace.army.mil Dr. Terry M Sobecki ERDC-EL-MS Dr. David M. Soballe ERDC-EL-MS Dr. John Hains ERDC-EL-MS

Sediment Management Below Reservoirs

- Wash load may be a problem when there is too much
- Cougar
- Mount St Helens Sediment Retention Structure

Sediment Change 2003 to 2005

Need for Temperature Control

- Spring/Summer: High Pool, very cold deep water is drawn from bottom intakes of existing tower, causes downstream cold spikes reducing migration of Spring Chinook
- Fall/Winter: Low Pool, cold reservoir is used up, water becomes mixed, water warmer than pre dam, causes prespawn mortality, premature fry emergence.
- Selective withdrawal operations will restore a more natural temperature cycle.

Old Tower - New Tower

Initial Drawdown to Construction Pool February – June 2002

- Concrete plug to Diversion tunnel opened on February 23
- Drawdown proceeded at 3 feet/day until May 26
- Reservoir turbidity increased during drawdown, causing high turbidity downstream of the dam
- Projected turbidity averaged 30 NTU, with spikes to 100 NTU
- Actual turbidity averaged 85-100 NTU, peaks of 130 – 225 NTU, spikes ~ 1000 NTU

Downstream Effect of Drawdown

(Data from S. Frk. McK. Riv.)

Turbid Water in Mckenzie R, Summer 2002

Downstream Impacts of Turbidity - Public Concerns

- Severe impact to fly fishing season
- Impacts to fishery, macro invertebrates, salmonid spawning gravels
- Concerns over volume of sediment released and amount deposited downstream
- Concerns over drinking water quality
- Concerns over the possibility of DDT contamination from Cougar sediment releases
- Comments solicited from public through public meeting process
- Corps regulations for implementing NEPA provide for publishing additional supplemental information documents on long-term or complex Environmental Impact Statements (EISs) to keep the public informed.

Willamette Temperature Control McKenzie River Sub-Basin, Oregon Cougar Dam and Reservoir Draft Supplemental Information Report US Army Corps of Engineers * Portland District January 2003.

USFS Insecticide Spraying (1949-1962)

Reservoir Operation during Construction

Construction season - October 1 to April 1
Three options available to reduce turbidity

- Increase drawdown rate (3 ft/day to 6 ft/day)
- Non-construction/winter flood control pool level – 1532 ft (high pool option) or hold pool at 1400 ft (low pool option)
- Target date to reach construction pool (high pool option) March 1 or April 1

Development of Operational Plans

- 6 operational scenarios were created from combinations of the 3 options
- 4 high pool (HP) options / 2 low pool (LP) options
- HEC ResSim model developed for the McKenzie River system. Period of record inflows used (1935 to 1998) to determine reservoir elevations under 6 operational scenarios.
- ResSIM elevation rate of change rule available
- Selected plan becomes part of adopted "Best Management Practices" in SIR

Reservoir model - HEC ResSim

Willamette River Temperature Control Project, Oregon

Cougar Dam Cross-Section Low Pool Option

Willamette River Temperature Control Project, Oregon

Cougar Dam Cross-Section High Pool Option

Alternative			Winter Pool Elev.
*** LP2 ***	-	6 ft/day	1400 ft

March 1 target date - % chance non-exceedance

LP2	1396	1400	1403	1407	1447

90 % non-exceedance LP options

Erosional processes within Cougar

- Initial submergence of dried lakebed deposits **
- Mass wasting and slope failures caused by rapidly changing pool levels
- Active erosion of predominantly clay banks
- Lateral migration and downcutting of main inflow tributaries. **
- ** cause higher levels of turbidity

Slope failures

Active erosion of exposed clay banks

South Fork McKenzie R. Inflow to Cougar

January 29, 2003

January 30, 2003

January 31, 2003

Rush Creek Drainage Failure

January 30, 2003

January 31, 2003

Pool maintained at 1450 feet to prevent further slope failures

Elevation vs. Turbidity – January – March, 2003

USGS Monitoring Study Objectives

- Measure deposition of fine materials into spawning gravels
- Deposition of DDT in fine materials
- Compare contributions from Cougar Reservoir construction with other areas
 - 2 reference sites
 - (S. Fork above Cougar, mainstem above S. Fork)
 - 2 sites below reservoirs
 - S. Fork below Cougar, Blue River below Blue River Res.
 - Downstream integrator site
 - McKenzie R at Vida below Cougar & Blue

Infiltration Bags

Dimensions:

- Width: 30 cm

- Depth: 56 cm

- Volume: 40 L

Teflon liner

- Buried ~40 cm below bed
- Used experimental (non-native) rock
 - Pre-clean rocks
 - Relatively uniform porosity
 - Direct comparisons between sites
- Deployed Aug. 03 July 04
 - 5 sites, 3 traps each
 - Spawning areas with downwelling

(Lisle and Eads, 1990)

Figure 4—Installation (A) and recovery (B) of an infiltration bag.

Winter Storms – Unregulated Sites

Winter Storms – Regulated Sites

Retrieval

- July 2004
 - 3 major events during winter
 - At least one trap lost from background site
- At least 1 good bag retrieval from each site

Accumulation of Fine Materials in Spawning Gravels - Mass

Accumulation of Fine Materials in Spawning Gravels - %

DDT CONCENTRATIONS IN DEPOSITED SEDIMENT

Conclusions-Sediment

- Sites below Cougar and Blue River dams had the highest deposition of fine sediment in redds
 - Slightly elevated % clays in fine material
 - Confirms previous study results
 - Contrary to much of the literature indicating coarsening of bed below dams
 - Bed moving events during the winter may allow scouring of fine material from the bed at unregulated sites

Conclusions—DDT

- DDT detected at low levels below Cougar but nowhere else
 - Probably transported downstream also but diluted by upstream sediment sources
 - Analytical issues may have obscured other DDT detections
- Concentration detected in sediment traps is about the same as detected in suspended sediment during storms, and in bank sediment (COE sampling)
- Reservoir may have acted as a sink prior to drawdown but a source during drawdown

SSC-T Relationships

- Turbidity (T) is a good surrogate for Suspended Sediment Concentration (SSC)
- SSC-Turbidity relationships for Santiam were used to estimate sediment discharge from Cougar in SIR
- Relationships are site specific lots of factors, clays, silts, sands have a different turbidity signature.
- SCC-T relationships are developed using sediment sampling over a range of flows
- Useful sediment management tool

SSC-Turbidity Relations

Sediment Management Report Card

More Information

- http://www.nwp.usace.army.mil/issues/wrt cp/cms/documents.asp
- Appendix C Reservoir Operational Modeling
- Appendix D Sediment (Estimated sediment released based on measured turbidity)

