

Sponsor: New Hampshire

(Pease Development Authority, Division of Ports and Harbors)

- Design: New England District
- Construction: Reed & Reed, Inc.,
 Maine
- Composite Sheeting: CMI, Inc.
- Geogrid Marine Mattresses: Tritton
- Instrumentation: Geokon, Inc.

Objectives:

- Replace lost intertidal sands
- Reduce sand migration into the Harbor
- Prevent shoreline erosion
- Solutions:
 - Install two cofferdams (bulkheads) across the eroded channel
 - Dredge sand from the shoaled areas of the River to encourage flow
 - Use the dredged sand to fill between the cofferdams to restore the sand flats

Design

- Synthetic sheeting:Corrosion, Cost
- Galvanized steel tiebacks and wale: Reliability
- Double Rows of sheets:
 No cantilever
- Single Wale: No diving (winter)
- Scour protection:Protect toe
- Drainage: Reduce loads

Design Parameters

- 50-year low tide
- 50% drainage in fill
- 12' depth to mudline
- 2 tons horizontal Load per linear foot
- Tiebacks 6' spacing
- 200 psf surcharge

Other Components

Wale: 2X 10" galvanized steel
 Channels on the outside

 Drains: 2 x 2" dia holes with wire mesh/geotextile backing, located under water to prevent freezing

Construction

- October 2004 April 2005
 (within the November- March dredging window)
- hydraulic dredge
- two barges, three cranes, clam shell, dozer, supply boats
- hydraulic vibratory hammer
- sheetpile was initially coasted with a polyurethane resin; delivery and QC problems resulted in switch to different manufacturer and polyester resin

SECTION

227

SECTION

227

October 2004

April 2005

Current Project Status

- Post-construction monitoring with UNH & CCOM
- TABS and ADCIRC models
- Documentation
 - NAE overspent no documentation to date
 - ERDC has started O&M report, lessons learned, and DDR
 - monitoring report

227