2005 Infrastructure Conference

A Review of Corps of Engineers Levee Seepage Practices and Proposed Future Changes

George Sills

ERDC Geotechnical & Structures Laboratory Vicksburg, MS

Darcy's Law

$$Q = kiA$$

August 2005

2005 Infrastructure Conference

Piping

"Piping *cannot* be analyzed by any rational method."

TM 5-818-5

Governing Equations

Flow can be described by the following equation

$$\frac{\partial}{\partial x} \left(T_{xx} \frac{\partial h}{\partial x} + T_{xy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial y} \left(T_{yx} \frac{\partial h}{\partial x} + T_{yy} \frac{\partial h}{\partial y} \right) = S \frac{\partial h}{\partial t}$$

- where
 - h = head
 - T = transmissivity coefficient
 - S = storage coefficient

Governing Equations

 Transformation of governing equations and simplification by assuming isotropic condition (Txx=Tyy=T) yields

$$S\frac{\partial h}{\partial t} = \frac{T}{J^{2}} \cdot \left(\alpha h_{\xi\xi} - 2\beta h_{\xi\eta} + \gamma h_{\eta\eta}\right)$$

$$= \frac{\left[y_{\eta}T_{\xi} - y_{\xi}T_{\eta}\right] \cdot \left[y_{\eta}h_{\xi} - y_{\xi}h_{\eta}\right]}{+\left[-x_{\eta}T_{\xi} + x_{\xi}T_{\eta}\right] \cdot \left[-x_{\eta}h_{\xi} + x_{\xi}h_{\eta}\right]}$$

$$+ \frac{1}{J^{2}}$$

Consequences of Flooding

Sacramento Resources at Risk in a Major Flood

- 400,000 people
- 170,000 structures
- 5,000 businesses
- 1,200 public facilities
- 117 schools
- 40 major roads and highways
- \$7-\$15 billion in damage in a single flood event

August 2005

Historic 1861 Sacramento

Flood of 1986

Largest flood recorded for Sacramento

and American Rivers

- Close to 100 year event
- 14 deaths
- \$379,000,000 in damages
- American River
 - Design capacity = 115,000 cfs
 - 24 hours at 130,000 cfs
 - Potentially within 3 hours of failing the levees

Flood of 1997

- Close to 100 year event
- 37 levee breaches in levee system
- 8 deaths
- 2,300 homes destroyed
- \$524,000,000 in damages
- Seepage and piping predominant mode of failure

Situational Awareness

- Many levee feasibility studies were done before 1997 flood lessons learned
- Hydrology changing
- 1997 flood lessons
- New seepage criteria
- Cost of levee projects

Situational Awareness

- Many levee feasibility studies were done before 1997 flood lessons learned
- Hydrology changing
- 1997 flood lessons
- New seepage criteria
- Cost of levee projects
- Need to evaluate CESPK criteria

Task Force Composition

George Sills

CEMVK

Lead

SHANNON & WILSON, INC. Chris Groves

Consultant

Member

Dr. M. Al-Hussaini

CELRD

Member

Dr. Les Harder

State of California

Member

Dr. Tom Wolff

Michigan State

Seamless ITR

Dr. Mike Duncan

Virginia Tech

ITR

August 2005

16

Hydraulic Gradient

$$i_o = \frac{h_o}{z}$$

August 2005

Major USACE Seepage Documents

- TM 3- 424, dated 1956
- CEMVD "Staff Study," dated 1962
- EM 1110-2-1913, dated 2000
- ETL 1110-2-555, dated 1997

1962 "Staff Study"

- No berm required if
 - i < 0.5 and no past problems</p>
- If i > 0.8 design berm
 - Designed for i = 0.3 at levee toe
 - i at berm toe = 0.8
 - Berm width 300 to 400 ft.
- Minimum berm if i > 0.5 and < 0.8, 150 ft.

EM 1110-2-1913

- No berm required if
 - i < 0.5 and no past problems
- If i > 0.8 design berm
 - Designed for i = 0.3 at levee toe
 - i at berm toe = 0.8
 - Berm width 300 to 400 ft.
- Minimum berm if i > 0.5 and < 0.8, 150
- Relief wells
 - Designed for i = 0.5 between wells

ETL 1110-2-555

- New levees NOT existing projects
 - Design berm if i > 0.3 at levee toe
 - Design so that i = 0.3 at levee toe
 - Relief wells
 - Designed for i = 0.5 between wells

Recommendations

- Design to a gradient of 0.5
 - Obtain adequate subsurface information
 - Insure γsat ≥ 110 lb/ft³
 - Study past flood histories
 - Plan to maintain
 - Develop a flood fight plan

2005 Infrastructure Conference

Can ya teach this dog to hunt something new?

ETL 1110-2-569 (May 2005)

- If i > 0.8 design so i = 0.5 at levee toe for
 - Berms, between relief wells, and landside drainage ditches
- If i > 0.5 and < 0.8 minimum berm is 4 X the levee height
- Thickness of berm increased the calculated/estimated amount for shrinkage and consolidation
- Contains WARNING about arbitrary limiting berm width to 300 to 400 ft may not be safe.

Item 450-R Seepage Berm Analysis

			io = 0.3					io = 0.5				
Station	Zt (ft)	ha (0.8*Zt) (ft)	Berm Width Computed (ft)	ho´ (ft)	ha@x = 300 ´ (ft)	il@x = 300 ´ (ft)	Safety Factor	Berm Width Computed (ft)	ho´ (ft)	ha@x = 300'(ft)	il@x = 300 ´ (ft)	Safety Factor
2715+00 B	7	5.6	893	18.8	11.41	1.63	0.49	837	18.15	11.02	1.57	0.51
2720+00	4	3.2	817	15.1 3	7.11	1.78	0.45	752	14.25	6.70	1.67	0.48
2725+00	8	6.4	582	14.4	8.97	1.12	0.71	539	13.85	8.63	1.08	0.74
2730+00	5	4	654	13.1 3	6.75	1.35	0.59	600	12.43	6.39	1.28	0.63
2745+00	12	9.6	480	15.8	11.32	0.94	0.85	448	15.42	11.04	0.92	0.87
2750+00	10	8	604	16.2 2	10.98	1.10	0.73	561	15.69	10.62	1.06	0.75

Item 450-R Seepage Berm Analysis for 100-yr Flood

Station	Zt (ft)	t @ Design Flowline	ho ′	io	Safety Factor @ Toe of levee	ha(ft)= ho ´*e^-cx	il	Safety Factor @ Toe of Berm
2715+00 B	7	9.77	13.85	0.2 4	3.29	8.41	1.2 0	0.67
2720+00	4	8.17	10.79	0.2 2	3.72	5.07	1.2 7	0.63
2725+00	8	6.57	8.42	0.1 3	6.30	5.25	0.6 6	1.22
2730+00	5	6.62	9.16	0.2 2	3.66	4.71	0.9 4	0.85
2745+00	12	6.28	11.78	0.3 0	2.66	8.44	0.7 0	1.14
2750+00	10	7.13	12.06	0.2 9	2.78	8.16	0.8 2	0.98

Note: io = 0.5 at levee toe for design flowline

MRL Item 450-R

Berm 315,000 Cost

Embankment cu yds Savings \$ 693,000

Savings

Right-of-Way 30 acres Cost

Savings (from

borrow area)

Savings

\$ 30,000

Total Savings \$ 723,000

Typical Levee Berm

PERVIOUS SUBSTRATUM

Typical Levee Berm

PERVIOUS SUBSTRATUM

2005 Infrastructure Conference

Factors Influencing Permeability

- Particle size and shape
- Properties of the fluid
- Hydraulic gradient
- Degree of saturation
- DENSITY

First Flood Event Pipe Develops

After First Flood Event

Zone of Lower Density and Higher Permeability has Developed

Research Goals

- Develop empirical basis for piping occurrence
- Develop theoretical basis for piping occurrence
- Develop predictive tool
- Develop monitoring tool

Conclusions (Needs)

- Mathematical model to predict behavior
- Identify reaches that have been affected
- Develop economical methods of repair
- EM 1110-2-1913 (Rewritten)

Probabilistic Analysis in Task Group Report

Critical Gradient N(0.9, 0.12)

