

Unlined Spillway Erosion Risk Assessment

Johannes Wibowo
Don Yule
Evelyn Villanueva
U.S. Army COE ERDC

Darrel Temple USDA

Introduction

Canyon Dam Spillway, Texas

Date: July 6, 2002

Flow: 66,000 cfs, 250 yr flood

Duration: 12 days

Spillway Width: 1260 ft

Material: Limestone

Introduction

Problem Statements:

 Spillway erosion analysis encounters variable nature of geometry, geologic material, and unpredictable flood events.

 Dam Safety Port Folio Analysis needs a tool to determine the probability of spillway damages.

Introduction

RESEARCH OBJECTIVES:

 Develop a tool to assess the probability of damages on unlined spillway erosion

Process of Answering Three Questions:

- 1 What can go wrong?
- 2 What is the likelihood it will go wrong?
- 3 What are the consequences if it does go wrong?

1 What Can Go Wrong?

Local Scouring

Spillway Breach

Headcut Erosion

Dam Breach

2 What Is the Likelihood It Will Go Wrong?

- Uncertainty of Flood Event
- Uncertainty of Material Parameters
- Uncertainty of Performance of the Unlined Spillway

3 What Are the Consequences If It Does Go Wrong?

- Spillway Partial Damage
 - Lightly Damaged
 - Moderately Damaged
 - Severely Damaged
- Spillway Breach
 - Population at Risk
 - Loss of Economic Value

Spillway Erosion Models

- REMR (WES, 1998)
- USDA (Temple et al., 1994)
- Annandale (1995)
- Bollaert (2002)

Spillway Erosion Models

Phases of Erosion

Original Surface

Head-cut Development

Vegetal Detachment

Head-cut Advancement

Erosion Process

Erosion Model - Threshold Line

Erosion Model - Threshold Line

Erosion Model - Threshold Line

Erodibility Index (K_h)

$$K_{h} = M_{s} * K_{b} * K_{d} * J_{s}$$

M_s = Material Strength Number

K_b = Block Size Number

K_d = Joint Shear Strength Number

J_s = Joint Orientation Number

Erosion Model - Threshold Line

Stream Power

$$P = \gamma * q * S_f$$

P = Stream Power

 γ = Unit weight of water

q = Unit discharge

S_f = Energy Slope

- Regression for Binary Outcomes
 - Occurrence (Erosion)
 - Non-Occurrence (No Erosion)
- User of Logistic Regression Method
 - Medical
 - Business
- Probabilistic Liquefaction Analysis (Liao et al, 1988)

Odds ratio

$$\frac{p}{1-p}$$

Logit transformation

$$Ln\left[\frac{p}{1-p}\right] = b_0 + b_1 x$$

$$p = \frac{1}{1 + \exp[-(b_0 + b_1 x)]}$$

p = probability of occurrence

 b_0 , b_1 = regression parameters

x = independent variable

Multiple Logistic Regression

$$p = \frac{1}{1 + \exp\left[-\left(b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n\right)\right]}$$

p = probability of occurrence

 $b_0, b_1, b_2, ..., b_n = regression parameters$

 $x_1, x_2, ..., x_n$ = independent variables

Multiple Logistic Regression for Spillway Erosion

$$p = \frac{1}{1 + \exp\left[-(b_0 + b_1 K_h + b_2 qH)\right]}$$

 K_h = Erosion Index, Material Resistance

qH = Hydraulic Attack

Result of Multiple Logistic Regression

$$p_e = \frac{1}{1 + \exp\left[-(1.171 - 3.9K_h + 3.364 qH)\right]}$$

Nagelkerke's $R^2 = 0.763$

p_e = probability of erosion

K_h = Erosion Index, Material Resistance

qH = Maximum qH, Hydraulic Attack

Logistic Regression for ERDC Threshold

Logistic Regression for Annandale Threshold

Independent Variables

- Hydrograph
 - Peak unit discharges (cfs/ft)
 - Flood durations (hrs)
- Spillway Geometry
 - Lengths (ft)
 - Slopes (degrees)
- Material Index
 - Erosion Indexes

Sj = F (Material, Peak Discharge, Duration, Average_Slope, and Length)

Data: Case Histories (USDA and COE)

Damage Levels

No Damage
Light Damage
Moderate Damage
Severe Damage

Breach

Percent of Erosion

0 - 0.05%

0.06 - 15%

16 – 40%

41 – 75%

76 – 100%

```
Sj = -1.515 Log_Kh + 8.635 Log_q - 1.581Log_Dura
+ 0.807 Slope_av + 3.975 Log_Length
```

Nagelkerke's $R^2 = 0.727$

Probability Formulation:

```
No Damage = 1/(1 + \exp(Sj-k1))
```

Light Damage = $1/(1 + \exp(Sj-k2)) - 1/(1 + \exp(Sj-k1))$

Moderate Damage = $1/(1 + \exp(Sj-k3)) - 1/(1 + \exp(Sj-k2))$

Severe Damage = $1/(1 + \exp(Sj-k4)) - 1/(1 + \exp(Sj-k3))$

Breach = $1 - 1/(1 + \exp(Sj-k4))$

k1,k2, k3, and k4 = boundary parameters from regression

Input	Tuttle Creek	Painted Rock		Saylorville	Buck_Doe
	KS	AZ		IA	MO
	Ls-Sh	Felsite	Tuff	Ss-Sh	Clay
Unit Disch. (cfs/ft)	112.1	41.8		104.4	163.5
Duration (hours)	120	576		216	3
Erosion Index, K _h	17	5340	28	103	0.01
Ave. Slope (deg)	1.4	1.32	14.04	1	7.2
Length (ft)	2200	520	230	1340	155
Probability Output					
No Damage	0.001	0.990	0.000	0.029	0.000
Light	0.019	0.009	0.002	0.275	0.000
Moderate	0.305	0.001	0.047	0.609	0.000
Severe	0.629	0.000	0.639	0.085	0.003
Breach	0.046	0.000	0.312	0.002	0.997

Unlined Spillway Erosion Risk Assessment

Prioritizing Process

Ranking the outcome:

Risk = P_{occurrence} * P_{failure} * Consequences

Summary

- Two Risk Assessment tools were developed for Port Folio analysis:
 - Logistic Regression Formulation for calculating the probability of erosion
 - Ordinal Logistic Regression for calculating the probability of erosion of different levels of damages
- These tools will be useful for prioritizing the maintenance of earth and rock surface unlined spillway