

Robert C. Patev

NAD Regional Technical Specialist

Navigation/Risk and Reliability

Outline

- Time-Dependent Reliability
- Hazard Functions
- Wolf Creek Major Rehabilitation Report (MRR)
 - Time-Dependent Reliability Modeling
 - Expert-Opinion Elicitation

Reliability

- Probability of unsatisfactory performance (PUP)
 - Limit state defined before failure occurs
 - Problem snapshot in time
 - Not cumulative (does not account for previous loadings)
 - Must account for degradation of structures
 - Mechanisms
 - Corrosion
 - Fatigue
 - Freeze-Thaw
 - Wear
 - Abrasion/Erosion

- Geotechnical Aspects
 - Difficult task-at-hand
 - Foundations
 - Karst
 - Used Expert-Opinion Elicitation to define PUPs
 - Snapshot
 - Alluvial
 - Used Taylor Series
 - Snapshot
 - Degradation
 - Data/Rates
 - Models

4

4

- Hazard Function
 - Developed by actuaries in 1880's
 - Used by aerospace industry in early 1950's
 - Conditional probability
 - h(t) = PUP [t + dt, t]
 - PUP in time, t+ dt, given you have survived up to time, t
 - Based on efforts on Ohio River Mainstem Study

$$h(t) = \frac{\text{Number of unsatisfactory performances in time, t + 1}}{\text{Number of survived up to time, t}}$$

1

Hazard Function

Wolf Creek Dam Project

- Concrete 240' ht 1836' length
- Earth Emb 200' ht 3900' length

Wolf Creek Dam - History

- Designed in late 1930's
- Construction began 1941
- Completion delayed until 1951 due to WWII
- 1967-68 Sinkholes near Switchyard + right d/s abutment wet areas D/S of embankment, muddy flows
- 1968-72 Emergency exploration / grouting
- 1975-79 Diaphragm walls construction (ICOS)

Wolf Creek Dam – Typical Section

Wolf Creek Dam – 1967/1968 Events

Wolf Creek Dam – Piezometers

Wolf Creek Dam – Cutoff Trench

Wolf Creek Dam – Cutoff Trench

61/421 14 August 1947 Filling core trench, Mon. 37

31,822 19 November 1942 View of backfilling operations in cavity at Sta. 50+00 on cutoff trench

Wolf Creek Dam – Diaphragm Wall, 1975-1979

Wolf Creek Dam – Distress Indicators

Comparison of Distress Indicators 1968-2004 at Wolf Creek Project

* Temperature measurements from PZs in 1968 and 2004 show anomalistic cold areas downstream of dam axis.

Wolf Creek Dam – Crest Settlement

Wolf Creek Settlement Rates

Wolf Creek Dam – Piezometric Data - Section 1

Wolf Creek Dam – Piezometric Data -Section 2

Wolf Creek Dam – Piezometric Data - Section 3

Wolf Creek Dam – Time-Dependent Reliability Concepts

- Time-Dependent Reliability Model
 - Utilize permanent rise in piezometric pressures in the foundations
 - Reliable and most consistent data
 - Model three different embankment sections
 - Assume that selected limit state occurs before any decrease or fall in piezometric pressure which would indicate a more critical situation

- Time-Dependent Reliability Model
 - Damage Accumulation Model (DAM)
 - Used in fatigue and wear rate analyses
 - Model cyclic variations of headwater above EL
 710

- Time-Dependent Reliability Model
 - DAM Calibration

- Time-Dependent Reliability Model
 - Developed Monte Carlo Simulation Model
 - Accounted for entire life cycle including past remedial repairs
 - Performed 50,000 iterations for reliability calculations
 - Random Variables
 - Annual Intensity
 - Based on historical records from 1950 to 2004
 - Truncated lognormal distribution
 - Annual Duration
 - Based on historical records from 1950 to 2004
 - Truncated lognormal distribution

- Time-Dependent Reliability
 - Random Variables (cont')
 - Spatial Variability Factor-
 - Accounts for variation in piezometric pressures in the foundation
 - Based on a wide range of piezometer data for each section
 - Incorporated as quadratic modifier to annual damage accumulation
 - Uniform distribution
 - More uncertainty in Section 3 than Sections 1 or 2 due to continued wet spots downstream and lack of diaphragm wall

- Time-Dependent Reliability Model
 - Limit state
 - Defined limit state for unsatisfactory performance on piezometric rise in 3 sections
 - Used Expert-Opinion Elicitation to quantify those values

Section	Average PZ	Rise of PZ	Unsatisfactory
	Value in 2004	from EOE	Performance Limit State
	(in feet)	(in feet)	(in feet)
1	9.3	5	14.3
2	4.1	5	9.1
3	1.2	3	4.2

Wolf Creek Expert Elicitation

Event Name	Full Description of Issue	Expert-opinion elicitation			Summary Table		
		Fire	st	Second			
		Resp	onse	Respons	е		
	At what future change in piezometric pressure in the foundation would you expect unsatisifactory performance in Section 1?	Median =	5	Median =	5		
					Confidence	Minimum =	1
	Expert #1 Expert #2			1 5	med high	25 Percentile =	3
	Expert #3 Expert #4	10		7 2	med med	Median =	5
	Expert #5 Expert #6	5		5 4	med high	75 Percentile =	5
	Export#0	3			ingii	90 Percentile =	6
						High =	7
	Minimum = Median = Maximum =	0.5 5 10		1 5 7			

Wolf Creek Dam Event Tree

Baseline Condition - Section 1

	<u>Limit State - PUP</u>	Annual Hazard Rate (from Reliabilty Model)	<u>Event</u>	Event Probability (from EOE)	Repair Scenarios/Costs	Effect on Hazard Rate
			Full UP (Dam breach)	0.15	Rebuild New Dam 5 Years Design 5 Years Construction	AHR changed to 0 for remainder of lif
Time, T	5 ft unacceptable rise in piezometric pressure	AHR X	Partial UP (Settlement, sinkholes, piping, wet spots)	0.6	Drain Reservior to El 680 Grout of Dam 1 Year Construction	AHR adjusted back to 0.1 Degrades using AHR
			Increased Surveillance and Monitoring (Reach limit state but no observable damages)	0.25	O&M Costs, Instrumentation and increased monitoring	Time T + 1 (AHR changes to next year)
		1-X 1-AHR			O&M Costs	Time T + 1 (AHR changes to next year)

- Conclusions
 - Time-dependent geotechnical models are difficult
 - Need to think well outside the box (deductive versus inductive thinking)
 - Incorporate and define distress indicators
 - My require some data processing
 - Understand models are for major rehabilitation purpose to gain funding to rehab structure
 - Don't get lost in the fine details
 - Not the true probability of failure
 - Within an order of magnitude
 - Not for dam safety