Use of Ultra-Fine Amorphous Colloidal Silica to Produce a High-Density, High-Strength Grout

Brian H. Green, R.P.G.

Research Geologist

Concrete and Materials Branch

Geotechnical and Structures Laboratory

Research

- Performed by:
- Concrete and Materials Branch
- Geotechnical and Structures Laboratory

Grout

Grout Requirements

-High Density: > 2.6 Mg/m³ (162.3 lb/cu ft)

-High Strength: > 70 MPa (10,150 psi)

-Ultra-Sonic Pulse Velocity: > 3.65 km/sec (11,975 ft/sec)

Materials for Grout Mixture

- Portland Cement ASTM C 150, Type I/II
 - Lehigh Portland Cement
- Hematite Fine Aggregate ASTM C 637, Grading 1
 - Nuclear Shielding Supplies and Service
- Silica Fine Aggregate # 20 to # 40 Sieve Size
 - Oglebay Norton
- Silica Fume Low-Carbon, from Production of Zirconia
 - Elkem Materials

Chemical Admixtures for Grout Mixture

- High-Range Water Reducing Admixture
 - Glenium 3030 NS, Degussa Admixtures, Inc.
- Air Detraining Admixture
 - D7 Defoamer, Amber Chemical
- Ultra-fine Amorphous Colloidal Silica (UFACS)
 - Cembinder 8, Eka Chemical, Akzo Nobel

Ultra-Fine Amorphous Colloidal Silica

Ultra-Fine
Amorphous
Colloidal Silica
(UFACS)

- Nano-Silica
- Nano-SiO₂

Viscosity Modifier

Definitions - Ultra-Fine Amorphous Colloidal Silica

- Nano From the Greek Nanos Meaning "Dwarf"
 - 10⁻⁹ Meter or One *Billionth* of a Meter
 - Nanoscience 1 to 100 Nanometer Scale

SEM PHOTO of 3.4 um PARTICLES ON HUMAN HAIR, 1000X

Cembinder Particles 3a1a

Definitions - Ultra-Fine Amorphous Colloidal Silica

Colloid

- Stable dispersion of particles in a medium
 - No settling out!
- Small Can't be seen with light optics
 - >1 nm to < 100 nm
- Can't pass through a membrane

Suspension of Silica Vs. Colloidal Silica

Definitions - Ultra-Fine Amorphous Colloidal Silica

- Ultra-Fine Amorphous Colloidal Silica (UFACS)
 - Industrially Manufactured
 - Liquid Form
 - Resembles Skim Milk

Ultra-Fine Amorphous Colloidal Silica

Ultra-Fine Amorphous Colloidal Silica

Developed for Drilling Applications

 Keep Solid Particles in Grout Mixture from Segregating or "Falling Out"

Grout Mixer and Pump

Grout Consistency

Grout - Fresh Properties

- ASTM C 939 (Flow Cone Method)
 - 20- 30 Second, Flow Time
- Wet Density:
 - ASTM C 938, Section 9.5.1 (Proportioning Grout Mixtures for Preplaced-Aggregate Concrete)
 - 2.7-2.76 Mg/m³ (168-172 lbs/ft³⁾

Grout -Hardened Results

 Hardened Density: 2.68 Mg/m³ (167.4 lb/cu ft)

 High Strength: 71.2 MPa (13,230 psi)

 Ultra-Sonic Pulse Velocity: 4.40 km/sec (14,435 ft/sec)

UFACS

New Chemical Admixture

Viscosity Modifying Admixture (VMA)

- Keeps Solids in Suspension
- Does not Decrease Strength
- Reduces Bleed

Questions?

Contact Information

Brian H. Green, R.P.G.
Research Geologist (CEERD-GM-C)
Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199
(601) 634-3216
Brian.H.Green@erdc.usace.army.mil

