

Presentation Overview

- Site Overview
- Ongoing DSA Projects
- AAR Project Issues
- Sample Retrieval
- Laboratory Testing
- Conclusions

Bluestone Dam – Existing Project

Bluestone DSA Phase I

- Project Features
 - 2 Lane Bridge
 - Thrust Blocks
 - ExtendingPenstocks
 - SacrificialBulkheads

Bridge

Bluestone DSA Phase II

- Project Features
 - Rock Anchors
 - Parapet Wall
 - Rt 20 GateClosure
 - New andModifiedTraining Walls

What is AAR?

- Alkali Reaction with Silica (ASR)
- Alkali Reaction with Carbonates (ACR)
- Severity Influenced by:
 - Aggregate
 - Cement Alkali
 - Humidity
 - Temperature
 - Stress Level
 - Time
- Decreased Serviceability and Design Life

Issues for Bluestone Dam

- Growth Mechanism ASR or ACR?
- Growth Rate
- Impacted Areas of the Dam
- Compressive Strengths
- Influence on Planned Construction
- Same Quarry OK?

Snowflake Quarry Potentially ASR Reactive

Sample Retrieval from Dam

- Roughly 30 Sample Locations
- 4" and 6" Thin Wall
- NQ, PQ and 3"
- Positioned Primarily in Spillway Bridge
- Selected other Locations
 - Galleries
 - Abutments

Damage Rating Indicies

- Stereobinocular MS
- Mag = 16x
- Natural and UV Light
- Uranyl Acetate
- Gel Fluoresces
- DRI ~ 30

Weighting Factors for Determination of DRI	
Feature measured	Factor
Cracks in coarse aggregate	X 0.25
Cracks in coarse aggregate + gel	X 2.0
Open cracks in coarse aggregate	X 4.0
Coarse aggregate debonded	X 3.0
Reaction rims	X 0.5
Paste with cracks	X 2.0
Paste with cracks + gel	X 4.0
Gel in air voids	X 0.5

DRI Results

Petrography

- Alkali SilicaGel Observed
- Chert
- Chalcedony
- Greywacke
- Alkali Contents < 2 kg/m³

Expansion Tests

- On Cores, CSA A864-00
- 100% Relative Humidity, 38 C
- Over Water and w/NaOH Added Insufficient Alkalis

Compressive Strengths – 1940s

Compressive Strengths – 2000

Conclusions

- Growth Mechanism ASR
- Growth Rate ~ Very Small
- Insufficient Alkalis to Support any Further Significant Expansion
- Compressive Strengths Decreased Consider in Future Designs
- Spillway Bridge Capacity

Greg Yankey

- 859/422-3000 (office)
- 859/619-8951 (cell)
- FMSM Engineers
- gyankey@fmsm.com

Fuller Mossbarger Scott & May

