

Aerosol Interaction with Individual Protective Equipment (IPE)

Dr. Jonathan Kaufman
Naval Air Systems Command
Patuxent River, MD
USA

Outline

- Problem
- Background
 - Aerosols
 - Driving force: air movement
- Test technology design
- Investigations
 - Literature review
 - Operationally-focused elevated wind study
 - S&T elevated wind study
- Summary

Problem

- IPE protective mechanisms that are effective against vapor or liquid agents may be ineffective against aerosols
- Protection against aerosols pose a complex set of issues

Relevance

- Impact operational planning: review of existing Tactics, Techniques, and Procedures (TTP)
- Provide basis for developing validated test
 technology: evaluate advanced IPE incorporating
 protection in high winds (e.g., JPACE block 2)
- Transition into testing: e.g., JSLIST NTA tests
- Provide otherwise unavailable data: validate
 IPE model simulations (input into JPM-IP modeling & simulation efforts)

Background

- **Aerosol**: Assembly of liquid or solid particles suspended in gaseous medium long enough to be observed or measured ($\sim 0.001 - 100 \mu m$)
- **Agglomerate**: Group of particles bound together by van der Waals forces or surface tension
- Particle size: diameter of spherical particle (theoretical) having same value of specific property as irregularly shaped particle (actual)
 - **Aerodynamic Diameter**: diameter of theoretical sphere (density = 1.0) having same gravitational settling rate as actual particle
 - **Size distribution**: spread of particle sizes in aerosol

Relationship between actual particle morphology and equivalent aerodynamic diameter Corn, (1968)

Willeke & Baron (1993)

Change in mean particle size and number as a function of time

10 nm 67 100 180 1000 1700 24 3.5 10,000 16000 220 10.3 3.0	D_1	D_2	10 nm	100	1000	10,000
1000 1700 24 3.5	10 ni	n	67			
	100		180	8.6		
10,000 16000 220 10.3 3.0	1000		1700	24	3.5	
	10,00	00	16000	220	10.3	3.0

Coagulation coefficient K x 10^{10} cm³/s for colliding aerosol particles of diameters D₁ and D₂ (nm) (Hinds, 1982)

dN	
$\frac{dV}{dt} = -KN^2$	N = number
dt	t = time
Smoluchowski (1917)	K = Coagulation coefficient

Background

Approximate sizes of representative natural and synthetic aerosols

Aerosol Penetration Mechanisms

Driving forces:

- hydrostatic pressure gradient (e.g., wind)
- concentration gradient
- temperature gradient

<u>Influencing factors</u>

- particle inertia (m•v)
- dp_i/d_i
- fabric geometry
- diffusion coefficient
- solubility

Deposition mechanisms

Nature of wind

Natural wind (meteorological)

Vehicle generated (e.g., rotorwash)

Motion generated (e.g., tank commander)

Goals

Characterize the effects of aerosols & wind on personnel CB exposure and ultimately physiological risks

- Define extent of operational risk
 - Threat (e.g., agents, concentration, wind speed, missions)
 - Mission impact, numbers affected
 - Likelihood of occurrence
- Establish extent of potential IPE limitations
 - Clothing
 - Masks
 - Filters
- Characterize operational conditions impacting IPE limitations
 - Body movements, physical tasks
 - Physiological demands (e.g., respiration, metabolism, sweating)
 - POL
 - Environmental conditions (e.g., dirt, dust, rain)

Independent variables

- Standardized test method
 - Laboratory (e.g., wind tunnels)
 - Field testing
- Challenge
 - Agent
 - neat vs. weaponized vs. simulant(s)
 - Vapor vs. liquid vs. aerosol
 - Dissemination (point vs. line source, ground)
 - Aerosols:
 - Liquids
 - Solids: particle size & distribution
- Wind source (e.g., rotor, wind tunnel, fan)
- Penetration/Deposition
 - Tagging challenge
 - Sampling
 - Quantitative analysis

Approach

Characterize conditions external to IPE

- Wind speed & characteristics (e.g., pressure, pulsitile vs. steady flow)
- Challenge concentration at IPE surface
- Challenge characteristics (e.g., aerosols, vapors)

• Define impact of IPE characteristics

- Material properties (e.g., pore size)
- Closures, interfaces
- Inner layers
- Characterize penetration pathways
- Quantify deposition on surfaces exposed to sweat (skin, inner clothing layer)

Literature Review

Aerosol Deposition

- < 10 µm mass mean diameter (MMD) can penetrate IPE
- Skin deposition increases as wind speed increases with particle MMD $< 3.0 \ \mu m$
- Skin deposition increases with ambient temp
- RH may not affect skin deposition
- Increasing body hair increases skin deposition

Reviewed available technical literature on wind-driven CB effects on IPE, including test methodologies and agent physiochemical properties: assess technical strengths and weaknesses of work (Documents referenced: 71)

Literature Review: Findings

Figure 1. Summary of Unclassified Deposition Velocity Data (Particle Size Range: 1-3 mm)

Relationship between wind speed, IPE, and deposited aerosol mass (literature values)

Deposition Velocity (V_d)

$$V_{d} = \frac{m_{deposited} - m_{background}}{A_{sample} \bullet C_{m} \bullet T}$$

M = aerosol mass

A = surface area

 $C_m = mass concentration$

T = exposure time

1980-CPO: Chemical IPE ca. 1980s

BDO/BDU/under: Battledress overgarment over battledress uniform & underwear

BDO/under: BDO & underwear

MKIII/CD/under: Navy chemical IPE over chambray shirt, denim trousers & underwear. *Chinn* (2004)

DoD Project O49 elevated wind study

Study Goals

Block I

- Determine impact of wind speed on aerosol entrainment in IPE layers and skin deposition
- Determine wind speeds resulting in least and greatest aerosol penetration

Block II

- Determine if field-expedient system modifications can mitigate wind speed effects
- Determine the effect of exposure time & wind speed on aerosol penetration of IPE

DO-49 study: Test matrix

			Configuration	_	Wind	
Block	Scenario	Ensemble ^a	System Modification	Exposure Time (min)	Speed (mph)	Trials
	1	IPE	None	10	0 to 2	3
Block I	2	IPE None		10	10	3
Blo	3	IPE None		10	20	3
	4	IPE	None	10	~40	3
	5	IPE	None	3	P+ ^b	3
Block II	6	IPE Taped ^c		10	P- ^d	3
	7	IPE	Taped	10	P+	3
	8	IPE	Untaped, Poncho	10	P+	3
	9	IPE	Untaped, Rain Gear (Wet Weather)	10	P+	3
	10	IPE	Taped Rain Gear (Wet Weather)	10	P+	3
	11	IPE + BDU	None	10	P+	3
	12	IPE	None	30	P+	3
	13	IPE	None	10 chamber 20 clean room ^e	P+	3

^a BDU – battledress uniform

^b Block I wind speed causing most aerosol penetration

^c All configurations taped on outside garment

^d Block I Wind speed causing least aerosol penetration

^e 10 min. in chamber at wind speed P+, 20 minutes in clean

room

DO-49 study: Test conditions

	mean	SEM
Mass Median Diameter (mm)	2.72	0.08
Geometric Standard Deviation	2.52	0.09
Average mass concentration (mg/m³)	188.1	8.2
CT (mg m ⁻³ min)	1976.6	145.6
Average Temp (°F)	74.3	0.7
Average RH (%)	43.4	1.1

Wind Speed (mph)

- 3
- 10
- 20
- 40

Environmental and simulant conditions

Skin & material sampling sites

DO-49 elevated wind study: Results of wind speed/garment combinations

Skin deposition of aerosol simulant:
UV illumination of Fluorescent tag

Deposition by layer

- liner roughly 10-fold less deposition than outer surface
- tee shirt, socks roughly equivalent
- other layers variable, generally much less

Current JSTO study: Effects of elevated wind speed on agent penetration of IPE

<u>Objectives</u>: Correlate elevated wind speeds (above 10 mph) with aerosol penetration of IPE materials and systems

Approach:

- Develop techniques to disperse and characterize submicron aerosol in wind tunnel (task 1)
- Assess aerosol penetration of materials and system components (e.g., sleeves) (task 2)
- Assess how IPE system design affects aerosol penetration (task 3)

Approach

Task 1 – Wind Tunnel Characterization:

Objective: characterize aerosol dispersal in a wind tunnel

- Air stream
- Target surface (IPE material, component, or system)
- Particulate tagging
- Aerosol characterization
 - particle size & size distribution
 - tag distribution
- Swatch penetration (RTI)
 - Liquid vs. solid phase aerosols $(0.02 1.0 \mu m)$
 - Variable pressure gradient (wind speed)
- Dissemination, wind tunnel
- Characterization, wind tunnel

RTI swatch test fixture: aerosol penetration in wind

NAVAIR wind tunnel

Effects of elevated wind speed on agent penetration of IPE

Particle Tagging: Understand particle surface chemistry regarding tag adsorption and agglomeration

- Covalent bonding of fluorescent material with fumed silica particle

Filtration: Quantify filter properties of IPE in flow field and compare with M&S

- Most penetrating particle size
- Aerosol/material interaction: solid vs. liquid particles
- Filter efficiency as function of
 - particle size
 - pressure (velocity)
 - IPE material
- Mass flux across IPE layers
 - Windward vs. leeward deposition
 - Mass transport through all layers

Effects of elevated wind speed on agent penetration of IPE

RTI swatch test fixture: aerosol penetration in wind

Swatch sample: outer shell & inner liner

Fabric Pressure Drop (" H2O)	Face Velocity (cm/s)	Wind Speed (mph)*
0.1	0.57 - 0.91	14
0.5	3.14	32
2	13.14	64

Relationship between fabric pressure drop, face velocity through the fabric, and upstream wind speed*.

* Wind speed (for this table) = ambient wind speed needed to create a velocity pressure equal to the fabric pressure drop

Effects of elevated wind speed on agent penetration of IPE

Airstream characteristics

Deposition mechanisms at varying wind speeds and particle sizes

- Fine particles ($<1.0 \mu m$): diffusion & interception
- Std aerosol test (RTI) particles (~ 2.5 μ m): interception & impaction predominate

Hinds, 1999

JSTO Elevated wind speed: Phase 1 results

Swatch penetration

- Liquid vs. solid aerosol
- Particle size
- Pressure drop
 - 0.1" (14 mph)
 - 0.5" (32 mph)
 - 2.0" (64 mph)

 $P_{obs} = C_{downstream} / C_{upstream}$

Results

- Peak penetrating particle size (approx. 0.08 0.25μm, vel. dep.)
- Max. penetration (approx. 50-70%, vel. dep.)
- Note: non-penetrating aerosol fraction depositing on/in fabric

JSTO Elevated wind speed: Phase 1 results

0.1" Fabric dp: Penetration (1% Oleic Acid)

Figure 4. Penetration versus particle diameter for the triplicate fabric swatches at 0.1" fabric pressure drop with: a) KCl aerosol and b) oleic acid aerosol.

Reproducibility

Results from 3 independent trials at 0.1" pressure drop

JSTO Elevated wind speed: Aerosol dispersion

Prototype aerosol dissemination

- A Spray system with Laskin nozzle
- B Dispersion box; *Inset: With top removed*
- C Dispersion System mounted in NATF *Inset: Rear of system*

Summary

- Aerosolized agents can overcome IPE protection
- Quantifying IPE limitations needs to account for:
 - Mass transport mechanism
 - Magnitude of driving force
 - Particle inertia
 - Particle size & mass

Acknowledgements

Individuals responsible for the success of this work include:

Literature Review:

Dr. Kenneth Chinn

Stephen Coleman

Teresa Kocher

Maura Rudy

Kathy Schaneveldt

Sponsor: JPACE

DO-49 study:

Jean Baker

James Hanzelka

Nathan Lee

Grant Price

Charlie Walker

Sponsor: JSIG

JSTO study:

Dr. Tom Cao

Terence Ghee

James Hanley

James Hanzelka

Dr. Chris Olson

Dr. Richard Phan

Sponsor: JSTO

(Tony Ramey, CAPO)

Questions?

Backup slides

Rotorwash effects

Effect of wind & challenge dissemination (DSTL 2002 study)

Literature Review

Challenge⁺	Ref#	Year	Primary Author	Wind Speed (knots)	Protective outergarment	Primary Focus	Findings
BG^, solid	1	1949	Wagner	4.1- 26.0	Butyl coated cloth	Ss in tunnel	Penetration increases with wind
VX, 9-12 μm*, liquid	2	1969	Dawson	11.3	1967-CPO	Manikin in tunnel	
Oleic acid, 0.7 μm*, liquid	3	1988	Hanley	14	1980-CPO	Ss sleeves only	Penetration increases with wind & decreasing particle size
AFL, 0.5 μm*, liquid	4	1989	Hanley	8.7- 34.8	СРО	Manikins with taping	Penetration increases with wind; upwind greater than downwind
TEG, 1 & 3 μm*	7	1990	Hanley	8.7- 34.8	СРО	Manikin, raingear	Penetration increases with wind
NaCl, 1-3 μm [*]	8	1991	Tytus	2.6-7.8	СРО	Manikins	Penetration increases with wind
TEG, 0.5 & 2 μm*	9	1999	Engels, Gibbs	4.3- 26.0	Navy CPO (Mk III)	Manikins	Penetration increases with wind
Syloid, 3.0 μm [*] , solid	10	1994	Chinn	2.3- 16.3	BDO	Manikins, field test	Penetration increases with wind

+-Aerosol, ^- particle size unreported, *-mass mean diameter, TEG - tetraethylene glycol, AFL - ammonium fluoroscein