

Applying Process Simulation to Achieve High-Value Benefits

David M. Raffo, Ph.D. Quantel, Inc. Software Engineering Institute Portland State University <u>raffod@pdx.edu</u> c) 503-939-1720

Agenda: Part I

- 1. Introduction: What is Process Simulation?
- 2. Motivation: What can be done with Process Simulation Models?
- 3. Examples of High Value Add Ways the Process Simulation Can be applied within an organization
- 4. Wrap-Up/ Conclusions

What Is a Simulation Model?

- A simulation model is a computerized model (not a maturity model) designed to display significant features of the dynamic system it represents.
- Simulations are generally employed when
 - behavior over time is of particular interest or significance, and
 - the economics or logistics of manipulating the system being modeled are prohibitive
- □ Common purposes of simulation models are:
 - to provide a basis for experimentation,
 - to predict behavior,
 - to answer "what if" questions,
 - to teach about the system being modeled.

What is Process Simulation?

- Process simulation models focus on the dynamics of systems development, maintenance and acquisition projects
- They represent the process
 - as currently implemented (as-is, as-practiced, asdocumented), or
 - as planned for future implementation (to-be)
- □ Simulation Features
 - Use Graphical interfaces
 - Utilizes actual data/ metrics
 - Predict performance
 - Supports "What if" Analyses
 - Support business case analyses
 - Reduces risk

Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance, V&V and IV&V Strategy for a project
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and make better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Document Processes
- Estimate Project Costs from the Bottom Up
- Manage Projects Quantitatively
- Train Project Managers

Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance, V&V, and IV&V Strategy for a project
 - Globally Distributed SW Development

NASA Model – IEEE 12207 Software Development Lifecycle

IV&V Layer – Select Criticality Levels for IV&V Techniques using pull-down menus

Notebook - IEEE12207_Baseline.mox

IV&V Profile: Silap-Unmanned

Save IV&V Profile

Load IV&V Profile: Delete IV&V Profile:

		Concept	Verification	Requiremen	ts Verification	Design Ve	erification	Code Ve	erification	Valida	ation
ID	IV&V Technique	Consequence	Error Potential								
1.1	Management and Planning of Independent Verification and Validation	1 ,	1 🗸	1 -	1,	1 ,	1	1,	1 ,	1	1 ,
1.2	Issue and Risk Tracking	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 -
1.3	Final Report Generation	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 ,	2 ,	2 🗸	2 🗸
1.4	IV&V Tool Support	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸
1.5	Management and Technical Review Support	1,	1 ,	1,	1 📕	1,	1,	1,	1 ,	1 ,	1 ,
1.6	Criticality Analysis	1 🗸	1 🗸	1 🗸	1 🚽	1 .	1 🗸	1 🗸	1 🖵	1 🗸	1 🗸
1.7	Identify Process Improvement Opportunities in the Conduct of IV&V	2 ,	2 🗸	2 🗸	2 🗸	2 🗸	2 🗸	2 ,	2 ,	2 🗸	2 🗸
2.1	Reuse Analysis	3 🗸	None 🗸								
2.2	Software Architecture Assessment	3 🗸	None 🗸								
2.3	System Requirements Review	3 🗸	4 🗸								
2.4	Concept Document Evaluation	None 🗸	None 🗸								
2.5	Software/User Requirements Allocation Analysis	None 🚽	None 🖵								
2.6	Traceability Analysis	None 🗸	None 🗸								
3.1	Traceability Analysis – Requirements			2 🗸	4 🗸						
3.2	Software Requirements Evaluation			3 🗸	4 🗸						
3.3	Interface Analysis – Requirements			4 🗸	3 🗸						

IV&V Layer – Select Criticality Levels for IV&V Techniques using pull-down menus

A Note	Notebook - IEEE12207_Baseline.mox										
2.3	System Requirements Review	None 🗸	None 🗸								
2.4	Concept Document Evaluation	None 🗸	None 🗸								
2.5	Software/User Requirements Allocation Analysis	None 🗸	None 🗸								
2.6	Traceability Analysis	None 🗸	None 🗸								
3.1	Traceability Analysis - Requirements			None 🗸	None 🗸				2	4	r.
3.2	Software Requirements Evaluation			None 🗸	None 🗸						
3.3	Interface Analysis - Requirements			None 🗸	None 🗸						
3.4	System test Plan Analysis			None 🗸	None 🗸						£
3.5	Acceptance Test Plan Analysis			None 🗸	None 🗸						
3.6	Timing and Sizing Analysis			None 🗸	None 🗸						16 17
4.1	Traceability Analysis - Design					None 🗸	None 🗸				8
4.2	Software Design Evaluation					None 🗸	None 🗸				
4.3	Interface Analysis Design					None 🗸	None 🗸				2
4.4	Software FQT Plan Analysis					None 🗸	None 🗸				
4.5	Software Integration Test Plan Analysis					None 🗸	None 🗸				
4.6	Database Analysis					None -	None 🗸				2
4.7	Component Test Plan Analysis					None 🗸	None -				
5.1	Traceability Analysis - Code							None +	None 🗸		
<mark>5.2</mark>	Source Code and Documentation Evaluation							None 🗸	None 🗸		
5.3	Interface Analysis - Code							None 🗸	None 🗸		
6.1	Traceability Analysis - Test									None 🗸	None 🗸
8.15	Project Management Oversight Support	None 🗸	1,	1,							

Impact of IV&V at Different Points in the Development Process

Result Comparison

		Total Effort	Rework Effort	Duration Mean	Corrected Defects	Latent Defects
Case	Configuration	Mean	Mean		Mean	Mean
		(Person Months)	(Person Months)	(Months)	(Number of Defects)	(Number of Defects)
1	Baseline	346.26	201.65	58.42	6,038.26	629.48
2	IV&V at Validation	355.35	210.75	59.95	6,113.79	574.17
3	IV&V at Code	334.13	189.53	57.38	6,134.84	573.49
4	IV&V at Design	327.93	183.33	56.56	6,123.11	581.27
5	IV&V at Requirements	326.82	182.21	56.40	6,078.87	600.04

% Improvement Compared to the Baseline

		Total Effort	Rework Effort	Duration	Corrected Defects	Latent Defects
Case	Configuration	Mean	Mean	Mean	Mean	Mean
1	Baseline					
2	IV&V at Validation	-2.63%*	-4.51%*	-2.63%*	+1.25%	+8.79%*
3	IV&V at Code	+3.50%*	+6.01%*	+1.77%	+1.60%	+8.90%*
4	IV&V at Design	+5.29%*	+9.09%*	+3.17%*	+1.41%	+7.66%*
5	IV&V at Requirements	+5.62%*	+9.64%*	+3.46%*	+0.67%	+4.68%*

GSD Model Structure

Interaction Effects (IE)

- Capture the impact of GSD factors on productivity and defect generation rate.
- Interaction effect on productivity rate

Evaluate Process Tradeoffs

Task Allocation Strategy Alternatives

Ideal Situation

- Duration when using follow-the-sun is 70% of the time it takes using single-site
- Module-based took a little longer than follow-the-sun

Real World Situation

- Follow-the-sun took about 37% longer than singlesite
- Module-based is the shortest

Key Questions GSD Models Can Address

- Impact of moving to multi-site development
- Impact of adding a new development site
- Task allocation strategy
- Multi-site QA strategy
- Impact of different development sites using different processes, people and technology
- Deals with issues due to cultural, language, time zone, productivity and cost differences
- Examines impact of personnel turnover and skills development

Applications for System Acquisition

- Can assess impact of using prime with collection of subcontractors at different sites (i.e. software acquisition model)
- Impact of short funding government projects

Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - □ IV&V Strategy
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies

Cost/Benefit of New Technologies

New LDD Technology 7 level 4 sub-systems level1 CM1: 496 modules in 'C' а JM1: 10,885 modules in 'C' b PC1: 1.107 modules in 'C' level0 С level2 \overline{NASA} level3 d KC1: 2,107 functions in 'C++' е level4 KC2: 523 functions in 'C+4 f a Stable accuracies accuracy 0.75 0.5 ~ effort 0.25 Massive changes in other measures 30 detectors, sorted by effort

Changes to Process

Changes to Model Reflecting Modified Process

Quantel

Quantitative Intelligence

Results Showing Impact on NASA Projects

Total Size (KLOC) 50% V&V	Total Effort + IV&V (PM)	Total Effort (PM)	Total Rework Effort (PM)	Total Duration (Month)	Average Duration
99.79	815.75	815.75	198.30	33.80	29.48
4.00	27.97	27.97	8.58	1.48	1.26
reinspect 5	0% detcap IV&V	= 0.05 & insp	ect 10% with de	etcap = 0.50	
99.79	813.16	807.16	190.02	34.24	29.32
4.00	27.89	27.89	8.35	1.46	1.26
	2.59	8.59	8.28	-0.44	0.16
reinspect 5	0% detcap IV&V	= 0.05 & insp	ect 10% with de	etcap = 0.70	
99.79	810.79	804.79	187.74	34.20	29.27
4.00	27.81	27.81	8.13	1.46	1.25
	4.96	10.96	10.56	-0.39	0.20
reinspect 5	0% detcap IV&V	= 0.02 & insp	ect 10% with de	etcap = 0.50	
99.79	814.93	808.93	191.73	34.28	29.35
4.00	27.87	27.87	8.30	1.46	1.26
	0.82	6.82	6.57	-0.47	0.12

General Business Case Questions

Quantel

- What is the impact of applying new tools and technologies?
- What is the economic benefit or value of the tool or technology? What is the *Return on Investment*?
- When is it useful and when might it be useless?
- Under what conditions does the tool or technology perform best?
- What performance standards does the tool need to achieve in order to have a positive return?
- Are there better ways to apply the tool?

Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - □ IV&V Strategy
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and Make Better Tradeoff Decisions
- Evaluate Process Improvement Opportunities

Incremental Development Model

Benefits of Process Simulation

		Project										
	Option	Total Effort (PM) Dev Eff + Dev Rwk	Rework Effort Devel Defects (PM)	Project Duration (Calendar Months)	Projected Cost or Revenue delta due to Duration Change	Total Injected Defects	Corrected Defects	Escapted Defects	Rework Effort for Field Defects (PM)	Impleme ntation Costs (\$)	NPV	ROI
0	Base Case	200	90	18	\$0.00	1150	990	160	40	\$0.00	n.a.	n.a.
1	Implement QFD	190	75	17.5	\$0.00	1150	1020	130	30	\$100,000	\$165,145	15%
2	Implement VOC	185	75	17	\$ 100,000	1150	1050	100	20	\$120,000	\$185,231	29%
3	Add QuARS Tool	175	65	16	\$ 300,000	1150	1090	60	10	\$ 80,000	\$289,674	88%
4	Eliminate	230	130	22	\$(400,000)	1150	900	250	80	\$0.00	-\$378,043	-129%
5	Additional Process											

Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - □ IV&V Strategy
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and Make Better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Documenting Processes

Architect, Design and Document Processes

Quantielligence

Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - IV&V Strategy
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and Make Better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Documenting Processes
- Estimate Project Cost from the Bottom-Up

Using Process Simulation to perform early stage project cost estimation

- Study Conducted by Mizell, in the Engineering Assessment Directorate at KSC
- Applied Process Simulation to provide bottom-up cost and schedule estimates at multiple stages of the project (i.e. from Concept of Operations forward)
- Utilized real project data from KSC and SEL
- Developed estimates that incorporated effects for
 - Incremental Spiral processes
 - □ Impact of short funding projects

NASA Model – Incremental Spiral Lifecycle

Adapted from Mizell, 2006

Accomplishments of Mizell's Research

- Methodology to use simulation to provide interval estimates
- Developed probability distributions for size, productivity, and defects using organization specific data
- Provided confidence intervals for project estimates
- Combined system dynamics model with DES process model to analyze effects of turnover on project effort and duration
- Adapted incremental spiral process model
- Complete NASA project case study

Process Models Used

- IEEE 12207 being used by NASA IV&V
- Adapted for incremental development
- Adapted for spiral development
- Incorporated system dynamics portions into model
- Model development supported by Quantel

Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - □ IV&V Strategy
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and Make Better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Documenting Processes
- Estimate Project Costs from the Bottom-Up
- Manage Processes Quantitatively

PROMPT Control and Feedback Loop

Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance/ V&V Strategy for a project
 - □ IV&V Strategy
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and Make Better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Documenting Processes
- Estimate Project Costs from the Bottom-Up
- Manage Processes Quantitatively
- **Train Project Managers**

Teaching Software Project Management through Modeling (Navarro, et. al., 2006)

Benefits of Process Simulation

- Decision Support and Tradeoff Analysis
- Sensitivity Analysis "What if"
- Supports Industry Certification and process improvement programs including CMMI, Six Sigma, and others
- Benchmarking
- Design and Define Processes/Metrics
- Bring Lessons Learned Repositories Alive
- □Can save cost, effort, and expertise
- Many ways to achieve High Value-Add by using process simulation

Bottom-Line

- Process Simulation can make an impact on your business.
 - Improving QA strategies (defect containment, COQ, COPQ)
 - □ Achieving higher CMMI Levels (Fulfilling CMMI L4)
 - □ Implementing 6 Sigma practices
 - □ Adopting new technologies
 - □ Plan/replan projects
 - □ Bottom-up cost estimation
- Enables an organization to adapt to change and improve processes more quickly – beating the competition, win contracts
- Enables an organization to design processes better, train employees, implement more quickly = better performance, higher quality, faster

The End

Questions?

Applying Process Simulation to Achieve High-Value Benefits

David M. Raffo, Ph.D. Quantel, Inc. Software Engineering Institute Portland State University

Agenda: Part II

- Overview of Simulation Types
- Process Tradeoff Analysis Method
 - 🗆 Data
 - Model Templates
 - Model Database
 - □ Analysis of Results
- Incremental Model tour
- Conclusions

Alternative Process Simulation Approaches

- Modeling Paradigms
 - Knowledge-Based Systems
 - Agent Based
 - State-Based
 - Discrete Event
 - □ System Dynamics
 - Hybrid
- Research Outlets
 - Software Process:
 Improvement and
 Practice
 - Journal of Systems and Software

- Tools
 - Arena
 - ProModel
 - Extend
 - Stella
 - VenSim
 - Research tools
- Conferences
 - Winter Simulation Conference
 - SPW/ ProSim
 - SEPG
 - SSTC

Alternative Process Simulation Approaches

- Knowledge Based Systems
 - Person-in-the loop
 - □ Fine level of granularity
 - Supports process enactment
- Agent Based Systems
 - □ Fine level of granularity
 - Supports detailed work interactions
- State Based Systems
 - Captures flow of control (work activities, parallelism) well
 - Multi-view graphical representations
 - Difficult to capture task, work package and resource details

Alternative Process Simulation Approaches

- Discrete Event Simulation
 - Able to represent richness of processes, work packages and resources
 - □ Good for modeling quantitative process performance
 - Good tool support
- System Dynamics
 - Captures feedback well
 - □ Often used for high level qualitative issues
- Hybrid
 - Captures best aspects of Discrete Event and System Dynamics
 - □ Models are complex
 - Being used to predict performance of multi-site development

Common Applications of Each Approach

	STRAT	PLAN	MGMT	IMPR	UNDR	TRAIN
KBS					X	X
Agent Based					Х	Х
State-Based		Х		Х	Х	X
Discrete Event	X	X	X	X	X	X
System Dynamic	X	X		Х	Х	X
Hybrid	X	Х	X	Х	Х	X

Development Projects

Project and Process Data

CSCI Data (Follows)								
No. of CSCIs		8							
CSCI names:	C&DH Estimated	Guidance SLOC	& NEPS	Groun	d DIVINER LAM	P LOLA	LROC		
C&DH									
CSCname	Reuse	Re-eng	New	Lang	Totals	Ptotals	IVVTotals	EP (CP
C&DH	250	00		75000	100000	120000	150000		
Total	250	00	0	75000	100000	120000	150000	3	1
Guidance & Nav									
CSCname									
Guidance & Nav	250	00		12000	37000	37000	39000		
Total	250	00	0	12000	37000	37000	39000	2	3

Organizational

- •Site and Project
- Industry Standard

Quantel

Better

Process

Decisions

ntelligence

Projec	t Id:	1						
	<u>Run Set</u>	<u>Size</u> Mean Sal Dev	<u>Effort</u> Mean Stal Dev	<u>Rework Effor:</u> Mean Stil. Dev	<u>Duration</u> Mean Stel Dev	<u>Avg Duration</u> Mean Stel Dev	<u>Corrected Defects</u> Mean Stil Dev	<u>Latent Defect</u> Mean Std Dev
-	1	58.00 1.63	54.321.35 1.484.76	10.568.58 217.46	3.572.02 63.39	2.381.00 55.76	2.756.13 77.96	143.6 3.72
-	2	58.00 1.63	53 666 85 1.511.91	9 573 17 298.02	3 457 40 63.54	2.266.06 66.44	2 759 38 76.79	140.40 4.82
-	3	58.00 1.63	54 321 35 1.484.76	10.568.58 217.46	3 572 02 63.39	2.381.00 55.75	2 756 13 77.96	143.6 3.72
	4	58.00 1.63	53 920 94 1.445.09	9 943 53 202.73	3 500 50 52.74	2310.60 53.75	2 758 30 77.41	141.4 43

Where does the data come from? (1 of 2)

- Input data are used to predict the performance measures.
- Can be derived from the organization
 - Current baseline
 - Exemplary projects
 - Pilot data
- Can also be derived from
 - Expert opinion
 - Industry data from comparable organizations
- Best judgments to describe the state of your organization

Input Data (2 of 2)

Examples:

- process documents and assessments
- amount of incoming work
- effort based on size (and/ or other factors)
- defect detection efficiency
- effort for rework based on size and number of defects
- defect injection, detection and removal rates
- decision point outcomes; number of rework cycles
- hiring rate; staff turnover rate
- personnel capability and motivation, over time
- resource constraints
- □ frequency of product version releases

Creating Process Simulation Models

•Joint Reviews

Customizing PATT

Multiple block types implement SW development techniques

Development blocks develop product and inject defects

Inspection blocks detect defects

Testing blocks detect defects

Rework blocks correct and inject defects

Joint Review blocks detect and correct defects.

IV&V blocks detect defects.

Project Data Base

Inputs

Size, productivity, error potential, consequence, defect injection, detection, and correction rates, cost, duration, etc.

Outputs

- Customizable reporting
- All levels Project, phase, activity levels
- Costs reported using COQ format
- Defect containment statistics
- □ Special reports for IV&V

Project Database

📠 IEEE12207Data : Dat	tabase	e (Access 2000 file format))	
🚰 Open 🕍 Design 🛅 Ne	ew 🕽	< º <u>u</u> 🧽 🧱 🏢		
Objects	2	Create table in Design view		Ivv_Step_Data
Tables	2	Create table by using wizard		Ivv_Totals
🗐 Oueries	2	Create table by entering data	Ħ	Parameter_Information
		Entity_Info		Parameter_Names
		Entity_List		Project_Activity_Efforts
Reports		Fan_Out	===	Project_Activity_Statistics
🛍 Pages		Input_Parameters		Project_Data
📿 Macros		Ivv_Activity_Statistics	Ħ	Project_Level_Info
Se sadden		Ivv_Input	===	Project_Phase_Data
Kass Modules		Ivv_Phase_Data		Project_Phase_Statistics
Groups		Ivv_Phase_Statistics	Ħ	Project_Statistics
😹 Favorites		IVV_Profiles		Project_Step_Data
		Ivv_Statistics	Ħ	Project_Totals
	<			>

Objects Tables P Oueries -8 Forms F Reports Pages Macros æ Modules Groups Favorites

2

2

5

F

5

F

5

F

5

5

F

Development Project Total Effort/Duration Statistics

Project Name	: IEEE12	207 SW Develo	ument Process i	Model			
<u>Run Sor</u>	<u>Size</u>	<u>Total Effori</u>	<u>Rework Effors</u>	<u>Dusation</u>	<u>Avg. Duration</u>	<u>Corrected Defects</u>	<u>Latent Defects</u>
	Mean	Mean	Mean	Mean	Mean	Mean	Mean
	Std. Dev	Std. Dev	Std. Dev	Std. Dev	Std. Dev	Std. Dev	Std. Dev
1	98.59	57,876.16	30,541.63	5,364.34	2,631.64	5,878.40	518.02
	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	98.59	58,052.90	30,541.63	5,351.82	2,575.64	5,878.40	518.02
	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	98.59	60,804.74	33,233.51	5,545.17	2,557.96	5,804.28	586.63
	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	100.48	61,794.80	33,756.2.5	5,256.44	2,33.5.78	5,901.19	596.30
	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	98.59	58,632.66	30,541.63	5,452.80	2,645.37	5,878.40	518.02
	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	98.59 0.00	58,632.66 0.00	30,541.63 0.00	5,452.80 0.00	2,645.37	5,878.40 0.00	518.02 0.00

Saturday, November 11, 2006

Page 1 of 1

PATT Architecture

Model Engine

PATT Model

- Simulation Model
- LC Templates
- Phases
- Blocks
- Connectors
- Libraries and Extensions

Database Engine

PATT Database

- Tables
- Custom Reports
- Model Specific
- PATT DB Structure

Analysis Engine PATT Output Analyzer • Sensitivity Analysis • Design of Experiments • Configuration Analysis

Benefits of Process Simulation

		Project										
	Option	Total Effort (PM) Dev Eff + Dev Rwk	Rework Effort Devel Defects (PM)	Project Duration (Calendar Months)	Projected Cost or Revenue delta due to Duration Change	Total Injected Defects	Corrected Defects	Escapted Defects	Rework Effort for Field Defects (PM)	Impleme ntation Costs (\$)	NPV	ROI
0	Base Case	200	90	18	\$0.00	1150	990	160	40	\$0.00	n.a.	n.a.
1	Implement QFD	190	75	17.5	\$0.00	1150	1020	130	30	\$100,000	\$165,145	15%
2	Implement VOC	185	75	17	\$ 100,000	1150	1050	100	20	\$120,000	\$185,231	29%
3	Add QuARS Tool	175	65	16	\$ 300,000	1150	1090	60	10	\$ 80,000	\$289,674	88%
4	Eliminate	230	130	22	\$(400,000)	1150	900	250	80	\$0.00	-\$378,043	-129%
5	Additional Process											

Computations and Tradeoffs

- Sensitivity Analysis
- Design of Experiments
- Business Case ROI, NPV
- Methods in use and available

Quantiative Intelligence

Demonstration of the Incremental Model

Simulation User-Levels

- Level 1: Manager Runs simulations based on predetermined options
- Level 2: Analyst Able to add or change the process to study the impact of process changes
- Level 3: Expert Able to create new models from scratch
- Level 4: Developer Able to program new block and/or modify the logic of existing blocks, as allow by the security model
- Level 5: Originator Establishes security model

Process Tradeoff Analysis Method (PTAM)

- Based on extensive research into Software Process Modeling conducted in academia, SEI and industry.
- Graphical user interface and models software processes
- Integrates SEI methods to define processes and supports CMMI PAs (CMMI L4 QPM)
- Supports Industry Certification Programs including CMMI, Six Sigma, and others
- Benchmarking
- Integrates metrics related to cost, quality, and schedule into understandable project performance picture.
- Predicts project-level impacts of process improvements in terms of cost, quality and cycle time

Process Tradeoff Analysis Method (PTAM)

- Support business case analysis of process decisions - ROI, NPV and quantitatively assessing risk.
- Reduces risk associated with process changes by predicting the probability of improvement
- Saves time, effort and expertise over other methods

Applying Process Simulation = High Value Add

- Evaluate Strategic Issues
 - Quality Assurance, V&V and IV&V Strategy for a project
 - Globally Distributed Software Development
- Assess the Costs and Benefits of Applying New Tools and Technologies
- Plan Processes and make better Tradeoff Decisions
- Evaluate Process Improvement Opportunities
- Architect, Design, and Document Processes
- Estimate Project Costs from the Bottom Up
- Manage Projects Quantitatively
- Train Project Managers
- Process Simulation can make a positive impact on your business!

The End

Questions?

