

Carnegie Mellon Software Engineering Institute Overview
This tutorial is intended to be a basic introduction to calculating the costs and benefits of CMMI-based process improvement
We'll discuss estimating, tracking, and validating ROI over the course of a CMMI improvement effort
You'll be introduced to several ways to calculate ROI, and the pros and cons of each
Implementation approaches, hints and tricks will be introduced to help you really make this work!
© 2004 by Carnegie Mellon University Version 1.1 CMMI ROI Tutorial - slide 5

Earnegie Mellon Software Engineering Institute ROI can be calculated many ways	
There is no single, official "definition" of ROI – it can be calculated in many ways.	
Some of these include: • Benefit/Cost ratio (typically considered ROI) • Net Present Value (NPV) • Internal Rate of Return (IRR) • Payback Period (PP)/Break Even Point (BEP)	
A <u>complete</u> ROI analysis includes all of the above.	
© 2004 by Carnegie Mellon University Version 1.1 CMMI ROI Tutorial - slide 7	

Carnegie Mellon Software Engineering Institute		
Examples		
Reduced cost of poor quality • 2:1 ROI over 3 years (Sier	r from over 45% to und mens Information Systems Lt	er 30% d, India)
\$2.1 Million in savings in har (Reported under non disclosure)	dware engineering pro	cesses
Reduced software defects pe 50% compared to defects pe (Lockheed Martin Systems Integratio	er million delivered SLC rior to CMMI ⁿ⁾	DC by over
Reduced defect rate at CMN compared to performance at (Lockheed Martin Maritime Systems	II ML5 approximately o SW-CMM ML5 & Sensors – Undersea Syste	me third
Avoided \$3.72M in costs due • As the organization impro level 5 (Raytheon North Texas	e to better cost perform ved from SW-CMM lev Software Engineering)	ance vel 4 to CMMI
2.5:1 ROI over 1 st year, with months (reported under non disclo	benefits amortized ove ^{sure)}	er less than 6
© 2004 by Carnegie Mellon University	Version 1.1	CMMI ROI Tutorial - slide 9

ŧ	Carnegie Mellon Software Engineering Institute Some Caveats!
	No financial or accounting knowledge is assumed
	The tutorial is not intended to be comprehensive, some topics are presented at a high-level only
	In some cases, nuances of financial accounting and ROI determination are not addressed
	We'll do our best to get you started without burying you in details!
	© 2004 by Carnegie Mellon University Version 1.1 CMMI ROI Tutorial - slide 13

Carnegie Mellon Software Engineering Institute System Development Costs
Costs incurred to develop the product Examples:
 Requirements development Design Product development + unit test Project management Engineering infrastructure Purchased components
What isn't on this list?
© 2004 by Carnegie Mellon University Version 1.1 CMMI ROI Tutorial - slide 19

Carnegie Mellon Software Engineering Institute		
During		
In order to track and maintain tracked on an ongoing basis (visibility, ROI sh (perhaps every 6	ould be -12 months)
At the same time, intermediat measurements, customer sati tracked to determine the impa	e indicators such isfactions survey act of improveme	as quality s, etc. are nt activities
Doing so demonstrates that the cost perspective, and continu effort.	ne effort is on tra es to keep the fo	ck from a cus on the
Additionally, early wins are unambiguously in financial executives like to see.	communicated terms – someth	ing
© 2004 by Carnegie Mellon University Versit	nn 1.1	CMMI ROI Tutorial - slide 39
Versi	week an a	

Calculating CMMI-Based ROI: Why When, What, and How? November 15th, 2004 © 2004 by Carnegie Mellon University

Dire	Carnegie Mellon Software Engineering Institute ECT People Costs C	of CMMI Improvement
	Costs of Process Definition /	Improvement
	Process definition & documentation	Interviews, meetings
	MSG, EPG, TWGs	Attendance in training
	Management of the effort	Process implementation
	Consulting	Process institutionalization
	Additional personnel	Process adherence
	Project team diversion	Assessments/appraisals
	Communication	Rewards and recognition
	Generally counted as salary with people's time	& benefit costs associated
	© 2004 by Carnegie Mellon University Versio	n 1.1 CMMI ROI Tutorial - slide 50

Tools PAL, Measurement Repository
Repository
Training

Carnegie Mellon Software Engineering Institu Indirect Costs Improvement	of CMMI	
Costs of Process Def	inition / Improve	ement
Loss of organizational/ team productivity	project	
© 2004 by Carnegie Mellon University	Version 1.1	CMMI ROI Tutorial - slide 52

4	Carnegie Mellon Software Engineering Institute Other Costs to	Think Abo	ut
	Rework due to poor quality • Prior to shipping • After shipping Poor project cycle time Lack of schedule predictat	y pility	
	Rather than consider t side of the ROI analysi to be part of the "bene	hese expenses on s, we'll consider ir fits" side.	the "cost" nproving them
	© 2004 by Carnegie Mellon University	Version 1.1	CMMI ROI Tutorial - slide 53

Carnegie Mellon Software Engineering Institu Direct Benefi	^{ite}
Reductions in:	Improvements in:
Defects	Process adherence
Rework	Quality
Effort/overtime	Product features
Schedule cycle time	
Product costs	
Production costs	
Support costs	
© 2004 by Carnegie Mellon University	Version 1.1 CMMI ROI Tutorial - slide 55

Reductions in.	Improvements in:
Training costs	Employee satisfaction/retention
	Customer satisfaction/retention
	Revenue
	Award fees
	Market share

Carnegie Mellon Software Engineering Institute					
Measuring Nor	n-Financial E	Benefits			
As discussed, there are m different ways to measure	nany non-financial be them.	enefits with			
It is important to measure non-financial benefits on an ongoing basis as part of the effort in order to keep focus on other indicators of progress or value.					
Keep in mind that measur doesn't directly impact the	ing these in non-finate ROI calculation.	ancial terms			
© 2004 by Cameroie Mellon University	Version 1.1	CMMI ROI Tutorial - slide 59			

Ę	Carnegie Mellon Software Engineering Institut Using Simulat	。 tion to Estin	nate
	Engineering process sin	nulation models focu	us on the
	dynamics of engineering	g development and r	maintenance.
	Modeling and simulation	n of the significant fe	atures of
	engineering processes t	facilitates experimer	Itation, answer
	"what-if" questions, and	perform sensitivity a	analysis.
	By modeling an organiz	ation's current engin	ieering
	processes and simulatin	ng improvements to	them, costs and
	benefits can be better e	stimated and determ	nined.
	Example: would the cos value if the input source degree of errors?	t of source code ins code had an abnor	pections add mally high
	© 2004 by Carnegie Mellon University	Version 1.1	CMMI ROI Tutorial - slide 61

Carnegie Mellon Software Engineering Institute		
Levels of Data	гаенту	
The level of detail you go on the size of the effort	o to in an ROI analy	sis will depend
Multi-million dollar CMMI most likely require a grea smaller, more tactical sol	efforts in larger org ater degree of data lution on just one pr	ganizations will fidelity than a roject.
Understand the level of f ROI analysis. Don't blow if decision makers are ex	idelity needed to ma v your chance with a pecting more detail	ake a credible a shallow case ls.
"Test run" your assum and other managers be	ptions and analys fore presenting th	is with peers le final results.
© 2004 by Carnegie Mellon University	Version 1.1	CMMI ROI Tutorial - slide 63

Carnegie Mellon Software Engineering Institute ROI can be calculated man	iy ways
There is no single, official "definition" of ROI – calculated in many ways.	it can be
Some of these include: • Benefit/Cost ratio (typically considered ROI • Net Present Value (NPV) • Internal Rate of Return (IRR) • Payback Period (PP)/Break Even Point (BE) :P)
A <u>complete</u> ROI analysis includes all of the	above
© 2004 by Carnegie Mellon University Version 1.1	CMMI ROI Tutorial - slide 65

Carnegie Mellon Software Engineering Institute Benefit/Cost Ratio					
	Year 0	Year 1	Year 2	Total	
Costs	\$300	\$100	\$100	\$500	
Benefits	\$0	\$500	\$500	\$1000	
Return	-\$300	\$400	\$400	\$500	

ŧ	Carnegie Mellon Software Engineering Institute Time Value of I	Money (TVM)			
	Benefit/Cost ratio, while va the concept of the Time Va	aluable, doesn't take alue of Money (TVN	e into account I).			
	Simply stated, the value of a dollar is less in the future than it is now.					
	Question: If risk-free interest rates are 10%, how much would you pay me now for \$100 in 3 years?					
	© 2004 by Carnegie Mellon University	Version 1.1	CMMI ROI Tutorial - slide 69			

Carnegie Mellon Software Engineering Institute Time Value of Money (TVM) Answer: \$75.13						
Principal Interest	Year 0 \$75.13 \$7.51	Year 1 \$82.64 \$8.26	Year 2 \$90.91 \$9.09			
Total	\$82.64	\$90.91	\$100			
© 2004 by Carnegie	Mellon University	Version 1.1	CMMI ROI Tutorial - slide 70			

Carnegie Mellon Software Engineering Institute	
Discounted Cash Flow (I	DCF)
To aid in corporate decision-making, the T Discounted Cash Flow (DCF) analysis.	VM is captured in
 In DCF analysis, future cash flows are disc either: The company's weighted average cost (WACC) A "hurdle rate" consisting of the compar capital adjusted by a risk premium appr type of project being analyzed 	counted using of capital ny's cost of opriate for the
© 2004 by Carnegie Mellon University Version 1.1	CMMI ROI Tutorial - slide 71

Carnegie Mellon Software Engineering Institute Discounted Cash Flow (DCF) This risk premium can be significant (30%+) in some cases!						
	Year 0	Year 1	Year 2			
Principal	\$45.52	\$59.17	\$76.92			
Interest	\$13.65	\$17.75	\$23.08			
Total	\$59.17	\$76.92	\$100			
© 2004 by Carnegie	Mellon University	Version 1.1	CMMI ROI Tutorial - slide 72			

ŧ	Carnegie Mellon Software Engineering Institute		
	Net Present Va	lue (NPV)	
	Net Present Value (NPV) flows and discounts them company's cost of capital	takes both cost and appropriately using or hurdle rate.	benefit cash the
	NPV is described as a do dissimilar projects to be co	llar value, allowing fo ompared against eac	or seemingly ch other.
	Pros • Articulates the dollar m • Provides a "one numbe • Incorporates TVM	agnitude of the retur er" method of compa	n ring projects
	Cons • Not as easy to compute • Don't know how long th	e ne return took to ach	ieve
	© 2004 by Carnegie Mellon University	Version 1.1	CMMI ROI Tutorial - slide 73

Carnegie Mellon Software Engineering Institute Net Present Value (NPV) With a 10% hurdle rate, our example looks like:						
	Year 0	Year 1	Year 2	Total		
Costs <u>Benefits</u> Return Disc Return (NPV)	\$300 <u>\$0</u> -\$300 -\$300	\$100 <u>\$500</u> \$400 \$363.63	\$100 \$500 \$400 \$330.58	\$500 <u>\$1000</u> \$500 \$393.94		
© 2004 by Carnegie Me	llon University	Version 1.1	CMMI R(Ol Tutorial - slide 74		

Carnegie Mellon Software Engineering Institute Internal Rate of Return (IRR) In our example, the IRR is 100%						
	Year 0	Year 1	Year 2	Total		
Costs Benefits	\$300 \$0	\$100 \$500	\$100 \$500	\$500 \$1000		
Return	-\$300	\$400	\$400	\$500		
Disc Ketu	ι Π-φ 3 00	φ200	\$100	ΦŬ		
© 2004 by Carnegie	e Mellon University	Version 1.1	CM	MI ROI Tutorial - slide 76		

Calculating CMMI-Based ROI: Why When, What, and How? November 15th, 2004 © 2004 by Carnegie Mellon University

Carnegie Mellon Software Engineering Institute Payback Period/Break Even Point In our example, the PP/BEP is Year 1				
	Year 0	Year 1	Year 2	Total
Costs	\$300	\$100	\$100	\$500
Benefits	\$0	\$500	\$500	\$1000
Return	-\$300	\$400	\$400	\$500
Net Return	-\$300	\$100	\$500	\$500
© 2004 by Carnegie Mellon University		Version 1.1	CM	MI ROI Tutorial - slide 78

Carnegie Mellon Software Engineering Ir Exercise	stitute	
 Organizational C 150 person engi Looking to reach No EPG or QA in Experiencing a C 	MMI improvement neering organizatio maturity level 2 in n place Cost of Quality of 65	effort n at maturity level 1 18 months 5%
How do the variou exercise?	is ROI calculation	s turn out for our
© 2004 ku Garanta Mallan Halumatan		
© 2004 by Carnegie Mellon University	Version 1.1	CMMI ROI Tutorial - slide 79

Carnegie Mellon Software Engineering Institute
Implementation Issues
ROI analysis won't necessarily improve a CMMI effort's results – you still have to execute!
In any process improvement effort, you should find ways to leverage organizational change best practices to overcome resistance to change.
Determining and tracking ROI as well as other measurements keeps the focus of the effort on the business benefits
Use the Measurement and Analysis process area early to put the focus on the business benefits from the start
© 2004 by Carnegie Mellon University Version 1.1 CMMI ROI Tutorial - slide 81

