
Sponsored by the U.S. Department of Defense
© 2003-06 by Carnegie Mellon University

Version 1.0 Basics of PSP and TSP for Systems Engineering

CarnegieMellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

Basics of PSP and TSP for
Systems Engineering
James McHale
Software Engineering Institute
November 2006

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 2

Carnegie Mellon
Software Engineering Institute

Agenda
Why PSP and TSP for Systems Engineering?
Things That Change, Things That Don’t
Time Logging Exercise
The TSP Launch
The TSP Management Framework
TSP Quality Management

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 3

Carnegie Mellon
Software Engineering Institute

Team Software Process
The Team Software Process (TSP) is a engineering
development process originally developed for software
teams.

TSP addresses common engineering and management
issues (the same ones addressed by CMMI).
• cost and schedule predictability
• productivity and product quality
• process improvement

TSP
• truly empowers teams and team members
• is a complete, mature, “operational” process
• provides immediate and measurable results

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 4

Carnegie Mellon
Software Engineering Institute

Improved Predictability
Effort and schedule deviation
are dramatically improved.

Schedule Performance

Typical Industry 100%+

Study baseline 27% to 112%

TSP < 10%

Average Schedule Deviation - Range

-20%
0%

20%
40%
60%
80%

100%
120%
140%
160%

Pre TSP/PSP With TSP/PSP

Average Effort Deviation - Range

-20%

0%

20%

40%

60%

80%

100%

120%

Pre TSP/PSP With TSP/PSP

Source: CMU/SEI-2000-TR-015

Effort/Cost Performance

< 5%TSP

17% to 85%Study baseline

100%+Typical Industry

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 5

Carnegie Mellon
Software Engineering Institute

Improved Productivity
A nine person TSP team from the telecommunications
industry developed 89,995 new LOC in 71 weeks, a 41%
improvement in productivity.

A TSP team from the commercial software industry,
developing an annual update to a large “shrink-wrapped”
software product, delivered 40% more functionality than
initially planned.

A TSP team within the DoD, developing a new mission
planning system, delivered 25% more functionality than
initially planned.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 6

Carnegie Mellon
Software Engineering Institute

Improved Quality
An analysis of 20
projects in 13
organizations showed
TSP teams averaged
0.06 defects per
thousand lines of new or
modified code.

Approximately 1/3 of
these projects were
defect-free.

7.5

6.24

4.73

2.28

1.05

0.06
0

1

2

3

4

5

6

7

8

 Level 1 Level 2 Level 3 Level 4 Level 5 TSP

Defects/KLOC

Source: CMU/SEI-2003-TR-014

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 7

Carnegie Mellon
Software Engineering Institute

Accelerated Process Improvement
TSP addresses or supports
most of the capabilities
expected of a project team
through CMMI Level 5.

It provides either a “starting
point” or a “next step”.

Using TSP as a starting point,
three organizations have
advanced from ML1 to ML4 in
less than 3 years. 0% 50% 100%

Level 2

Level 3

Level 4

Level 5

CMMI Maturity
Level

Percentage of SPs

Directly Addressed
Supported
Partially Addressed
Not Addressed
Unrated

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 8

Carnegie Mellon
Software Engineering Institute

TSP Results: NAVAIR AV-8B
Mar. 2000 Began current CMM-based improvement

effort (now a CMMI-based effort)
Oct. 2000 Began PSP/TSP introduction sequence
Jan. 2001 First TSP team launched
May 2001 CBA-IPI: CMM level 2; 3 KPAs satisfied at

level 3; level 4/5 observations on TSP
June 2001 Received draft of CMM-TSP gap analysis

(levels 2 and 3 only, minus SSM and TP) to
help guide improvement efforts

Feb. 2002 Received late-model gap analysis (including
TP at level 3 and levels 4 and 5)

June 2002 Launched second TSP team
Sep. 2002 CBA-IPI: CMM level 4 (16 months from L2!)
See Crosstalk, Sep. 2002, “AV-8B’s Experiences Using the TSP to Accelerate SW-CMM Adoption,” Dr. Bill
Hefley, Jeff Schwalb, and Lisa Pracchia, and Crosstalk, Jan. 2004, “The AV-8B Team Learns Synergy of EVM
and TSP and Accelerates Software Process Improvement”

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 9

Carnegie Mellon
Software Engineering Institute

AV-8B CMMI “Quick Look” Profile
PA -> RM RD TS PI VE VAL CM PPQ A M A CAR DAR O EI O PD O PF O ID O T O PP PP PM C IPM Q PM SAM RSKM IT

Specific G oal 1 U FI NR S S S S S U U NR S S S U S U S S U U U U S
SP1.1 FI FI NR FI FI FI FI FI PI PI NR FI FI FI LI FI PI FI FI FI FI FI FI FI
SP1.2 FI FI NR FI FI FI FI FI PI PI NR FI FI FI LI FI PI FI FI FI PI FI LI FI
SP1.3 FI FI FI FI FI FI LI NR FI FI FI FI FI FI FI FI FI PI LI FI FI
SP1.4 PI PI NR FI FI FI LI FI FI FI FI
SP1.5 FI NR FI PI FI PI
SP1.6 NR FI
SP1.7 FI

Specific G oal 2 S NR S S S S U U U NR U U U S S NR U U S S
SP2.1 FI FI FI FI FI FI LI LI PI PI FI FI LI FI FI NR PI NR FI FI
SP2.2 FI FI FI FI FI FI FI LI PI NR FI FI FI FI FI FI PI LI FI FI
SP2.3 FI FI FI PI NR PI FI LI FI FI FI FI LI FI FI
SP2.4 NR LI LI FI LI FI FI
SP2.5 FI FI
SP2.6 FI
SP2.7 FI
SP2.8

Specific G oal 3 NR S S S S S S S
SP3.1 NR FI FI FI FI FI FI FI
SP3.2 FI FI FI FI FI FI FI FI
SP3.3 LI FI FI
SP3.4 NR FI
SP3.5 NR

Specific G oal 4 S
SP4.1 FI
SP4.2 FI
SP4.3 FI

PA -> RM RD TS PI VE VAL CM PPQ A M A CAR DAR O EI O PD O PF O ID O T O PP PP PM C IPM Q PM SAM RSKM IT
Generic G oal 2 S S S U S S S

Generic G oal 3 S U U S S S S S U U NR NR S S NR S U S S S S S S S

LEGENDS

Practices G oals
FI Fully Im plem ented or Satisfied S Satisfied
LI Largely Im plem ented U Unsatisfied (Goals)
PI Partially Im plem ented NR Not Rated
NI Not Im plem ented
NR Not Rated

Source: NAVAIR

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 10

Carnegie Mellon
Software Engineering Institute

HPOHPO
Process
Improvement
Group Kick-off

Process
Improvement
Group Kick-off

Documenting
SSA
Processes

Documenting
SSA
Processes

Defined Web Defined Web
RequirementsRequirements

Process Action Process Action
Teams (Teams (PATsPATs))

CMMI
Level Rating
CMMI
Level Rating

PSP/TSPPSP/TSP

ToolsTools

CMM CMM
Level 4Level 4

TrainingTraining

February 2002

May 2004

May 2002

SCAMPI

- Risk Management

- Measurement & Analysis

SM

NAVAIR P3-C Journey

Source: NAVAIR

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 11

Carnegie Mellon
Software Engineering Institute

Improved Quality of Work Life
“A more disciplined process allowed me to do a better job, and
allowed me to balance my job with other aspects of my life.”

“This project ended up a lot less stressful than other projects.”

“Promotes a less stressful environment. Can track that the
project is on schedule. Fewer defects are seen positively in the
organization.”

“It is nice to be associated with a project that had few defects.”

“I liked the level of detail that went into initial plan, and the
constant awareness of the schedule. Allowed us to make
adjustments as the project went on, instead of waiting for a major
milestone.”

“It was nice that management finally allowed the team to create
the schedule.”

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 12

Carnegie Mellon
Software Engineering Institute

Adoption
Organizations that are using, piloting, or preparing to pilot
the TSP.

ABB
ABC Informatica
Activision
Advanced Information Services
Advanced Maturity Services, Inc.
Alan S. Koch Consultants
Ambient Consulting
AMRDEC
Boeing
Centre De Investigacion En
Matamaticas
Census Bureau
CQG, Inc.
CRSIP / STSC / DRAPER
Davis Systems
DOE / Los Alamos
DOE / Naval Reactors
DPC Cirrus
Dynamics Research Corp.
EDS
Halex Associates
Heath Solutions, Inc.

Helsana
Honeywell
IBM
Intuit*
Iomega
I.Q. Inc.
KPMG
L. G. Electronics
Lockheed Martin / KAPL*
LogiCare
Los Alamos National Laboratory
M/A-Com Private Radio Systems, Inc
Magellan Navigation*
Microsoft*
Motiva
NASA Langley
NCR/Teradata
NCS Pearson
Northern Horizons
Northrop Grumman
Oracle*
Prodigia S.A. de C.V.

PS&J Consulting /
Software Six Sigma
QuarkSoft
Respironics
Rockwell Collins
SAIC
Samsung SDS
Siberlink
STPP, Inc.
STSC
Trilogy
TYBRIN Corporation - Air Logistics
University of Alabama / Huntsville
University of Queensland
US Army / AMRDEC
US Navy / NAVAIR*
US Navy / NAVOCEANO*
US Navy / NAVSEA*
Xerox

*Organizations we are currently
working with

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 13

Carnegie Mellon
Software Engineering Institute

TSP for Systems Engineering
NAVAIR and other organizations have discussed the
possibilities of adapting TSP for systems engineering use
for several years.

Late in 2005, an effort was launched to extend TSP
practice to systems engineers working in NAVAIR
organizations, beginning with those that have had success
using TSP for software development.

Several organizations, including at least one within
NAVAIR, are forging ahead with their own TSP
adaptations.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 14

Carnegie Mellon
Software Engineering Institute

Building High-Performance Teams
TSP builds high-performance teams from the bottom-up.

Teaming
Skills

Team
Building

Team
Management

Process discipline
Performance measures

Estimating & planning skills
Quality management skills

Goal setting
Role assignment

Tailored team process
Detailed balanced plans

Team communication
Team coordination

Project tracking
Risk analysis

1

2

3

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 15

Carnegie Mellon
Software Engineering Institute

Personal Software Process?
The PSP is a process designed for individual use that
applies to structured personal tasks.

PSP builds the teaming skills required for the TSP.

With PSP, developers learn how to use a defined process
and how to measure, estimate, plan, and track their work.

This leads to
• better estimating, planning, and tracking
• protection against over-commitment
• a personal commitment to quality
• personal involvement in process improvement

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 16

Carnegie Mellon
Software Engineering Institute

PSP-TSP Process Evolution

PSP1
Size estimating

Test report

PSP2
Code reviews

Design reviews

TSP
Team development

PSP2.1
Design templates

PSP1.1
Task planning

Schedule planning

PSP0
Current process
Time recording

Defect recording
Defect type standard

PSP0.1
Coding standard

Size measurement
Process improvement

proposal (PIP)

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 17

Carnegie Mellon
Software Engineering Institute

PSP Improves Performance
Estimation accuracy
• fewer underestimates
• more accurate estimates
• estimates balanced around

zero

Quality
• yield improves by 2X to 3X
• fewer defects in unit test,

integration test, system test
• COQ is flat or reduced

PSP 0

PSP 1

PSP 2

Effort Estimation Accuracy

100%0%-100%-200% 100%0%-100%-200%
0

20

40

0

20

40

100%0%-100%-200% 100%0%-100%-200%
0

20

40

0

20

40

100%0%-100%-200% 100%0%-100%-200%
0

20

40

0

20

40

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 18

Carnegie Mellon
Software Engineering Institute

PSP Quality Results

11109876543210
0

10

20

30

40

50

60

70

80

90

100

110

120

Mean Compile + Test

PSP Level Mean Comp + Test

Program Number

Defects Per KLOC Removed in Compile and Test

M
ea

n
N

um
be

r o
f D

e f
e c

ts
 P

e r
 K

LO
C

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 19

Carnegie Mellon
Software Engineering Institute

Agenda
Why PSP and TSP for Systems Engineering?
Things That Change, Things That Don’t
Time Logging Exercise
The TSP Launch
The TSP Management Framework
TSP Quality Management

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 20

Carnegie Mellon
Software Engineering Institute

Non-Software Disciplines
Many software-intensive projects have significant non-
software components in terms of
• requirements and test
• support activities
• customer deliverables

The ways that these “other” activities are planned, staffed,
and managed are reflected in organizational structure.
• separate departments for systems engineering, test,

documentation, etc.
• often depends on the size of the organization and the

size of the typical project
• multi-disciplinary teams
• matrixed project teams

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 21

Carnegie Mellon
Software Engineering Institute

Introduction to Personal Process
SEI teaches a two-day class, Introduction to Personal
Process, which begins the individual quality journey by
raising the issues of size measures and process and
defect definitions for intellectual work other than software
development.

It makes both economic and technical sense to extend the
formal definitions of such work so that it may be planned
and tracked with TSP methods.

NAVAIR has been a leader in adapting PSP and TSP to
non-software work, and is actively engaged with SEI to
formalize this work.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 22

Carnegie Mellon
Software Engineering Institute

Process Improvement for “Others”
Applying TSP practices to other disciplines besides
software engineering can be relatively straightforward.
• many teams are already doing it successfully
• based on CMM originally, which was based roughly on

Crosby’s five-level model of the manufacturing quality
journey

• planning and tracking mechanisms are not software-
specific

• size and defect definitions (by default) are rooted in the
software-specific examples from PSP training!

In order to adapt PSP for use by other disciplines, size
measures and defect definitions must be addressed.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 23

Carnegie Mellon
Software Engineering Institute

Size Measures
For a size measure to be useful, it must be
• useful for planning
• precisely defined
• directly countable in an intermediate or final product

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 24

Carnegie Mellon
Software Engineering Institute

Defect Definitions
A defect is anything in an interim or finished product that
must be changed for the product to be used as intended.

Defects in test procedures, requirements analyses,
specifications, or user documentation can all adversely
affect a customer’s use of the delivered product.

Defect definitions must make sense to the people who
must correct them.

Defect correction is sometimes called rework.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 25

Carnegie Mellon
Software Engineering Institute

Building High-Performance Teams
TSP builds high-performance teams from the bottom-up.

Teaming
Skills

Team
Building

Team
Management

Process discipline
Performance measures

Estimating & planning skills
Quality management skills

Goal setting
Role assignment

Tailored team process
Detailed balanced plans

Team communication
Team coordination

Project tracking
Risk analysis

1

2

3

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 26

Carnegie Mellon
Software Engineering Institute

Team Management Framework
The TSP team management framework helps the team
meet their planned commitments by providing support for
• team communication and coordination
• project tracking and status reporting
• requirements management
• change management
• risk management

Team members gather data and manage their personal
plans.

These data are consolidated at the team level and used by
the team to manage the team’s plan.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 27

Carnegie Mellon
Software Engineering Institute

TSP Base Measures

Size

Schedule

Effort

Quality

Source: CMU/SEI-92-TR-019

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 28

Carnegie Mellon
Software Engineering Institute

Quality
Summary

Schedule
Status

Engineer A

Product
Summary

Enter Defects
by Component

and Phase

Enter
Size by

Component

Enter
Week Task
Completed

Enter
Time by

Task

Updated Team and
Engineer Task, Schedule,

and Quality Plans

Team Task
and Schedule

Summary

Task Status
Engineer A

TSP Project Tracking

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 29

Carnegie Mellon
Software Engineering Institute

Tracking with TSP Measures
The TSP base measures can be combined to provide a
number of derived measures for managing projects.

Estimation accuracy (size/time)
Prediction intervals (size/time)
Time in phase distribution
Defect injection phase
distribution
Defect removal phase
distribution
Productivity
%Reuse
%New Reusable
Cost performance index
Planned value
Earned value
Predicted earned value

Defect density
Defect density by phase
Defect removal rate by phase
Defect removal leverage
Review rates
Process yield
Phase yield
Failure cost of quality
Appraisal cost of quality
Appraisal/Failure COQ ratio
Percent defect free
Defect removal profiles
Quality profile
Quality profile index

TSP Derived Measures

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 30

Carnegie Mellon
Software Engineering Institute

TSP Weekly Tracking
TSP teams track their status weekly using a defined
process and the weekly status summary in the TSP
support tool.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 31

Carnegie Mellon
Software Engineering Institute

Earned Value Management
TSP teams review progress at the weekly meeting using
earned value tracking provided by the TSP support tool.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

8/
30

/2
00

4

9/
13

/2
00

4

9/
27

/2
00

4

10
/1

1/
20

04

10
/2

5/
20

04

11
/8

/2
00

4

11
/2

2/
20

04

12
/6

/2
00

4

12
/2

0/
20

04

1/
3/

20
05

1/
17

/2
00

5

1/
31

/2
00

5

2/
14

/2
00

5

2/
28

/2
00

5

3/
14

/2
00

5

3/
28

/2
00

5

4/
11

/2
00

5

4/
25

/2
00

5

Week

Pe
rc

en
t C

om
pl

et
e

Cumulative
Planned
Value

Cumulative
EV

Cumulative
Predicted
Earned Value

Baseline
Cumulative
Plan Value

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 32

Carnegie Mellon
Software Engineering Institute

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

8/
30

/2
00

4

9/
13

/2
00

4

9/
27

/2
00

4

10
/1

1/
20

04

10
/2

5/
20

04

11
/8

/2
00

4

11
/2

2/
20

04

12
/6

/2
00

4

12
/2

0/
20

04

1/
3/

20
05

1/
17

/2
00

5

1/
31

/2
00

5

2/
14

/2
00

5

2/
28

/2
00

5

3/
14

/2
00

5

3/
28

/2
00

5

4/
11

/2
00

5

4/
25

/2
00

5

Week

C
um

ul
at

iv
e

Pl
an

ne
d

H
ou

rs

Cumulative
Planned
Hours

Cumulative
Actual Hours

Resource Management
TSP teams review resource utilization at the weekly
meeting using analyses provided by the TSP support tool.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 33

Carnegie Mellon
Software Engineering Institute

Quality Management
TSP teams use the Quality Profile as an early warning indicator
of post-development defects.

The quality profile uses five software quality benchmarks.

Satisfied criteria are plotted at the outside edge of the chart.

Component 2 Risk Factors

Design/Code Time

Code Review Time

Compile D/KLOCUnit Test D/KLOC

Design Review Time

Component 5 Risk Factors

Design/Code Time

Code Review Time

Compile D/KLOCUnit Test D/KLOC

Design Review Time

High quality component Poor quality component

Inadequate
design review
time results in
design defects

escaping to
test and

production.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 34

Carnegie Mellon
Software Engineering Institute

Defect Removal Profile
TSP teams use the Defect Removal Profile to track
• plan and actual defects removed by phase
• early vs. late defect removal plan

Defects Removed by Phase for Assembly SYSTEM

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

REQ In
sp

ec
tio

n
HLD

 In
sp

ec
tio

n
DLD

 R
ev

iew
DLD

 In
sp

ec
tio

n

Cod
e

Cod
e R

ev
iew

Com
pil

e
Cod

e I
nsp

ec
tio

n

Unit
 Te

st

Buil
d a

nd
 In

teg
rat

ion
 Tes

t
Sys

tem Tes
t

Phase

D
ef

ec
ts

 R
em

ov
ed

 b
y

Ph
as

e

Plan

Actual

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 35

Carnegie Mellon
Software Engineering Institute

Agenda
Why PSP and TSP for Systems Engineering?
Things That Change, Things That Don’t
Time Logging Exercise
The TSP Launch
The TSP Management Framework
TSP Quality Management

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 36

Carnegie Mellon
Software Engineering Institute

Exercise Objectives
The PSP is the foundation for the TSP.

This exercise provides
• an understanding of the baseline process, PSP0
• familiarity with the basic measurement forms used in

the PSP

Similar measures and forms are used in the TSP.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 37

Carnegie Mellon
Software Engineering Institute

Basic Process Elements
A process script and basic measures

A project plan summary form

A time recording log

A defect reporting log

A defect type standard

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 38

Carnegie Mellon
Software Engineering Institute

Basic Process Measures -1
The reason to measure a process is to understand it.
• how much time is spent in various activities
• what is produced at various times
• how many defects are injected and removed, and when

With these data, engineers can better
• plan and estimate the work to be done
• evaluate the results
• improve the process for the next project

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 39

Carnegie Mellon
Software Engineering Institute

Basic Process Measures -2
To measure the process, the work is divided into defined
activities called phases.

Each phase consists of
• the task to be done during the phase
• the entry criteria, or the items required before the work

can start
• the exit criteria, or the items that must be produced by

the end of the phase
• verification steps to ensure that the work is properly

done

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 40

Carnegie Mellon
Software Engineering Institute

Basic Process Measures -3
The measures for each phase are
• time spent (in minutes) in that phase
• defects injected in that phase
• defects removed in that phase

The program size is also measured, but only during the
postmortem phase at the end of the project.

These measures provide the foundation for all PSP
measurements, analyses, and planning.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 41

Carnegie Mellon
Software Engineering Institute

Baseline Process Phases

Baseline Process

D
evelopm

ent

Planning

Design

Code

Compile

Test

Postmortem

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 42

Carnegie Mellon
Software Engineering Institute

A Process Script
PSP0 Process Script

Phase
Number

Purpose

To guide you in developing m odule-level program s

 Entry Criteria • Problem description
• PSP0 Project Plan Summ ary form
• Time and Defect Recording Logs
• Defect Type Standard
• Stop watch (optional)

1 Planning • Produce or obtain a requirements statement.
• Estim ate the required developm ent time.
• Enter the plan data in the Project Plan Summ ary form.
• Com plete the Time Recording Log.

2 Development • Design the program.
• Im plement the design.
• Com pile the program and fix and log all defects found.
• Test the program and fix and log all defects found.
• Com plete the Time Recording Log.

3 Postm ortem Complete the Project Plan Summary form with actual
time, defect, and size data.

 Exit Criteria • A thoroughly tested program
• Com pleted Project Plan Sum mary form with estimated

and actual data
• Com pleted Defect and Time Recording Logs

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 43

Carnegie Mellon
Software Engineering Institute

PSP0 Project Plan Summary
The project plan summary holds project data in summary
form.
• planned and actual data
• to date history
• time in phase
• defects injected
• defects removed

PSP0 Project Plan Summary

Student Date
Program Program #
Instructor Language

Time in Phase (min.) Plan Actual To Date To Date %
 Planning
 Design
 Code
 Compile
 Test
 Postmortem
 Total

Defects Injected Actual To Date To Date %
 Planning
 Design
 Code
 Compile
 Test
 Total Development

Defects Removed Actual To Date To Date %
 Planning
 Design
 Code
 Compile
 Test
 Total Development
 After Development

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 44

Carnegie Mellon
Software Engineering Institute

Time Recording Log
Engineers use the time recording log to record
• the time when they start on a project phase
• the time when they stop work on a phase
• the interruption time
• the elapsed time less interruption time
• comments

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 45

Carnegie Mellon
Software Engineering Institute

Defect Recording Log
Engineers use the defect recording log to record
information about all defects found in reviews, compiling,
and test.
• the defect number
• the defect type
• the phase in which it was injected
• the phase in which it was removed
• the time to find and fix the defect
• a brief description of the defect

If the defect was injected while fixing a defect, that defect’s
number is recorded.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 46

Carnegie Mellon
Software Engineering Institute

Exercise Instructions -1
Read through the PSP0 process scripts (in the workbook)
so that you understand the entry and exit criteria for each
phase.

Read JD’s scenario for program 1A and fill out the time
log. The defect log and project plan summary are already
filled out for you.

Refer to the instructions for each form to determine what
information goes in each field.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 47

Carnegie Mellon
Software Engineering Institute

Exercise Instructions -2
When did JD start?

When did he finish?

Was he interrupted?

What process phase is
this?

Where should this
information be recorded?

JD begins work on assignment 1A
[8:00] by reviewing the requirements in
the assignment package, including the
test requirements, to be sure he
understands them. He copies the
requirements to his note pad. Then,
based on the data presented on past
student performance and JD’s feeling
about his own performance, he
estimates this assignment will take 3
hours and writes this on his note pad
[8:06].

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 48

Carnegie Mellon
Software Engineering Institute

Results
How long did the project
take?

How many defects were
removed?

In what phase did JD
spend the most time?

What percent of JD’s time
was spent in compile +
test?

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 49

Carnegie Mellon
Software Engineering Institute

Exercise Summary
The baseline personal process is simple and easy to use.

The PSP forms simplify data collection and provide a
convenient reference for planning future projects.

The basic PSP time, size, and defect measures provide
the data for the TSP.

HOMEWORK: For systems engineering in your
organization, how would the Plan Summary change?
What phases of development would you define?

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 50

Carnegie Mellon
Software Engineering Institute

Agenda
Why PSP and TSP for Systems Engineering?
Things That Change, Things That Don’t
Time Logging Exercise
The TSP Launch
The TSP Management Framework
TSP Quality Management

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 51

Carnegie Mellon
Software Engineering Institute

Building High-Performance Teams
TSP builds high-performance teams from the bottom-up.

Teaming
Skills

Team
Building

Team
Management

Process discipline
Performance measures

Estimating & planning skills
Quality management skills

Goal setting
Role assignment

Tailored team process
Detailed balanced plans

Team communication
Team coordination

Project tracking
Risk analysis

1

2

3

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 52

Carnegie Mellon
Software Engineering Institute

TSP Structure and Flow -1
In the TSP, each major project
cycle or phase begins with a
Launch.

The Launch is a defined team
planning process that also
facilitates team-building.

The team reaches a common
understanding of the work and
the approach.

They produce a detailed plan to
guide the next development
phase or cycle.

Launch

Cycle 1

Postmortem
Relaunch

Cycle 2

Postmortem
Relaunch

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 53

Carnegie Mellon
Software Engineering Institute

TSP Structure and Flow -2
TSP has four principal
development phases.
• Requirements, High-Level

Design, Implementation,
Test (TSP default)

• or a project-defined lifecycle

TSP projects can start or end
on any phase.
• from requirements through

system test
• requirements only
• high-level design only
• as needed to do the work

Relaunch

Postmortem

Integration
and Test

Relaunch

Implementation

Postmortem

Relaunch

High-Level
Design

Postmortem

Launch

Requirements

Postmortem

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 54

Carnegie Mellon
Software Engineering Institute

TSP Structure and Flow -3
The TSP phases can and
should overlap.

The TSP development
strategy encourages
• incremental development
• iterative development
• multiple builds or cycles
• work-ahead

TSP permits whatever
process structure makes the
most business and technical
sense to the team.

Relaunch

Postmortem

Iteration 4

Relaunch

Iteration 3

Postmortem

Relaunch

Iteration 2

Postmortem

Launch

Iteration 1

Postmortem

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 55

Carnegie Mellon
Software Engineering Institute

TSP Process Elements
Checklists, specifications,
standards, and other process
assets (22), including

– TSP introduction sequence
– Launch planning guidance
– Executive tools such as checklists

for planning assessment and
quarterly reviews

Forms (22), including
– Time Recording Log
– Defect Recording Log
– Inspection Report
– Process Inventory
– Quality Summary

TSP role specifications (12),
including
– Meeting roles and responsibilities
– Inspection roles and responsibilities
– Customer interface manager role

and responsibilities
– Process manager role and

responsibilities

Process Scripts (30), including
– Overall development and

enhancement process
– Overall maintenance and

enhancement process
– Launch process
– Test defect handling

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 56

Carnegie Mellon
Software Engineering Institute

The Launch Process Meetings
Day 1

1. Establish
Product and

Business
Goals

2. Assign Roles
and Define
Team Goals

Day 2

4. Build Top-
down and

Next-Phase
Plans

5. Develop
the Quality

Plan

6. Build Bottom-
up and

Consolidated
Plans

Day 3

7. Conduct
Risk

Assessment

8. Prepare
Management
Briefing and

Launch Report

PM. Launch
Postmortem

Day 4

9. Hold
Management

Review

3. Produce
Development

Strategy

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 57

Carnegie Mellon
Software Engineering Institute

The TSP Launch Artifacts
Business needs
Management goals
Product requirements

Team goals

Conceptual
design

Planned
products

Size
estimates

Task hour
plan

Schedule
plan

Earned-
value plan

What
if?

How
well?Who?When?How?What?

Team
strategy

Team
process

Team roles

Task plans

Detailed
plans

Quality plan Risk
evaluation

Alternative
plans

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 58

Carnegie Mellon
Software Engineering Institute

TSP Project Tracking -1
Project tracking in the TSP is based on the principles and
measures used in the PSP.

The detailed team and individual plans facilitate precise
project tracking.

Each team member is responsible for
• gathering data on their work
• tracking status against their personal plan
• keeping the team informed
• the quality of the work they produce

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 59

Carnegie Mellon
Software Engineering Institute

TSP Weekly Meeting
Manager’s report (team leader)
• new issues and developments

Role reports (8, more or less)
• customer/requirements, design, implementation, test,

planning, process, quality, support
Risk report
• status and changes in assigned risks
• impending flag dates and required actions

Project status
• individual and team (planning manager)

Next week’s plans
• individual tasks
• dependencies (e.g. reviews needed)
• task, hour, EV goals

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 60

Carnegie Mellon
Software Engineering Institute

Agenda
Why PSP and TSP for Systems Engineering?
Things That Change, Things That Don’t
Time Logging Exercise
The TSP Launch
The TSP Management Framework
TSP Quality Management

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 61

Carnegie Mellon
Software Engineering Institute

TSP Project Tracking -2
Project tracking in TSP is based on
• the team’s plan
• task hour and task completion data
• plan and earned value

Individual plans facilitate precise project tracking.

Team members are each responsible for
• gathering data on their work
• tracking status against their personal plans
• the quality of the work that they produce
• keeping the team informed of their progress

Individual team member data are consolidated each week
so that the team can assess progress against goals.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 62

Carnegie Mellon
Software Engineering Institute

The WEEK Summary
The weekly team meeting is the forum that the team uses to
• track progress against the plan
• track the status on the project's issues and risks
• communicate with each other

TSP Week Summary - Form WEEK
Name Date 2/7/2000
Team

Status for Week 5 Cycle
Week Date 1/31/2000 Plan/

Weekly Data Plan Actual Actual
Project hours for this week 80.0 69.0 1.16
Project hours this cycle to date 400.0 344.8 1.16
Earned value for this week 10.3 3.1 3.37
Earned value this cycle to date 40.2 30.0 1.34
To-date hours for tasks completed 293.0 303.8 0.96

Plan Actual Earned Planned Plan Hrs./
Assembly Phase Tasks Completed Resource Hours Hours Value Week Actual Hrs.
SYSTEM REQ Write SRS general sections tmc 14.0 12.0 1.4 4 1.17
SYSTEM REQ Weekly requirements analysis meeting 5tma 4.0 4.0 0.4 5 1.00
SYSTEM REQ Weekly requirements analysis meeting 5tmb 4.0 4.0 0.4 5 1.00
SYSTEM REQ Weekly requirements analysis meeting 5tmc 4.0 4.0 0.4 5 1.00
SYSTEM REQ Weekly requirements analysis meeting 5tmd 4.0 4.0 0.4 5 1.00

TASKS DUE THROUGH WEEK 7

SYSTEM REQ Review SRS general sections tmc 5.0 0.0 4
SYSTEM STP Complete Validation Test Plan tmd 8.0 8.5 0.0 4 0.94

Consolidated Team Plan
Security System Upgrade

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 63

Carnegie Mellon
Software Engineering Institute

Maintaining the Team’s Schedule
The team manages its commitments by using the data it
collects.

The team determines how it is doing against its plan.

If the team is falling behind, it determines
• what is the likely cause
• what the team can do to maintain its commitment

The team informs management if the commitment cannot
be maintained or if management help is needed.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 64

Carnegie Mellon
Software Engineering Institute

TSP Week Summary - Form WEEK
Name Date 2/7/2000
Team

Status for Week 5 Cycle
Week Date 1/31/2000 Plan/

Weekly Data Plan Actual Actual
Project hours for this week 80.0 69.0 1.16
Project hours this cycle to date 400.0 344.8 1.16
Earned value for this week 10.3 3.1 3.37
Earned value this cycle to date 40.2 30.0 1.34
To-date hours for tasks completed 293.0 303.8 0.96

Consolidated Team Plan
Security System Upgrade

Determining Status Against Plan -1
Two things are important here.
• the team’s current project status
• the team’s projected completion date

Current status is determined using data on the WEEK
form.

()
()weekcurrenttodateEVactual

todateEVactualtodateEVplanbehindweeks
/

−
=

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 65

Carnegie Mellon
Software Engineering Institute

Projected completion date can be determined using data
on the WEEK form and the original planned weeks.

TSP Week Summary - Form WEEK
Name Date 2/7/2000
Team

Status for Week 5 Cycle
Week Date 1/31/2000 Plan/

Weekly Data Plan Actual Actual
Project hours for this week 80.0 69.0 1.16
Project hours this cycle to date 400.0 344.8 1.16
Earned value for this week 10.3 3.1 3.37
Earned value this cycle to date 40.2 30.0 1.34
To-date hours for tasks completed 293.0 303.8 0.96

Consolidated Team Plan
Millenium Upgrade

Determining Status Against Plan -2

()
() ()weekcurrenttodateEVactual

todateEVactualgotoweeks −
=

100

()
⎭
⎬
⎫

⎩
⎨
⎧

−+=
⎭
⎬
⎫

⎩
⎨
⎧

weeksplanned
original

weekcurrentgotoweeks
completionat

behindweeks

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 66

Carnegie Mellon
Software Engineering Institute

Identifying Estimating Problems
The cost performance index (CPI) shows how the team is
performing with respect to the effort estimates in the plan.

The CPI is available on the WEEK form.

taskscompletedforhoursactual
taskscompletedforhoursplanCPI =

TSP Week Summary - Form WEEK
Name Date 2/7/2000
Team

Status for Week 5 Cycle
Week Date 1/31/2000 Plan/

Weekly Data Plan Actual Actual
Project hours for this week 80.0 69.0 1.16
Project hours this cycle to date 400.0 344.8 1.16
Earned value for this week 10.3 3.1 3.37
Earned value this cycle to date 40.2 30.0 1.34
To-date hours for tasks completed 293.0 303.8 0.96

Consolidated Team Plan
Security System Upgrade

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 67

Carnegie Mellon
Software Engineering Institute

Interpreting the CPI
A CPI of 1 means

What does this imply about the accuracy of the individual
estimates?

Assuming the team is achieving the planned task hours,
what does this imply about schedule performance?

What does a CPI of 0.5 imply about
• effort estimates?
• schedule performance (assuming the team is achieving

the planned task hours)?

=sum of the effort estimates
for the completed tasks

sum of the actual effort
for the completed tasks

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 68

Carnegie Mellon
Software Engineering Institute

Interpreting the CPI (continued)

What does a CPI of 2 imply about
• effort estimates?
• schedule performance (assuming that the team is

achieving the planned task hours)?

What general characterization can be made about
schedule performance based on the CPI?

Schedule growth (due to effort estimates) = 1/CPI

Projected schedule = Original plan weeks/CPI

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 69

Carnegie Mellon
Software Engineering Institute

Interpreting Task Hour Data
The task hour data is in the form WEEK and can be
interpreted similar to the effort for completed tasks data.

If (Plan hours to date)/(Actual hours to date) = 2
• What does it mean?
• What is the effect on schedule performance?

•TSP Week Summary - Form WEEK
•Name •Date 2/7/2000
•Team

•Status for Week 5 •Cycle
•Week Date 1/31/2000 •Plan/

•Weekly Data •Plan •Actual •Actual
•Project hours for this week 138.0 69.0 2.00
•Project hours this cycle to date 689.6 344.8 2.00
•Earned value for this week 10.3 3.1 3.37
•Earned value this cycle to date 80.4 30.0 2.68
•To-date hours for tasks completed 293.0 303.8 0.96

Consolidated Team Plan
Security System Upgrade

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 70

Carnegie Mellon
Software Engineering Institute

Interpreting Task Hour Data (continued)

If (Plan hours to date)/(Actual hours to date) = 0.5
• What does it mean?
• What is the effect on schedule performance?

What general characterization can be made about
schedule performance based on the plan/actual task
hours?

Schedule growth (due to task hours) = plan/actual

Projected schedule = Original plan weeks * (plan/actual)

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 71

Carnegie Mellon
Software Engineering Institute

Average Task Hours Per W eek

15.1

13.3
12.6

9.6

0

2

4

6

8

10

12

14

16

18

04
/20

/19
98

04
/27

/19
98

05
/04

/19
98

05
/11

/19
98

05
/18

/19
98

05
/25

/19
98

06
/01

/19
98

06
/08

/19
98

06
/15

/19
98

06
/22

/19
98

06
/29

/19
98

07
/06

/19
98

07
/13

/19
98

07
/20

/19
98

07
/27

/19
98

08
/03

/19
98

08
/10

/19
98

08
/17

/19
98

08
/24

/19
98

08
/31

/19
98

09
/07

/19
98

09
/14

/19
98

09
/21

/19
98

09
/28

/19
98

10
/05

/19
98

10
/12

/19
98

10
/19

/19
98

10
/26

/19
98

11
/02

/19
98

11
/09

/19
98

11
/16

/19
98

11
/23

/19
98

11
/30

/19
98

12
/07

/19
98

12
/14

/19
98

12
/21

/19
98

12
/28

/19
98

01
/04

/19
99

01
/11

/19
99

01
/18

/19
99

01
/25

/19
99

02
/01

/19
99

02
/08

/19
99

02
/15

/19
99

02
/22

/19
99

03
/01

/19
99

03
/08

/19
99

03
/15

/19
99

03
/22

/19
99

03
/29

/19
99

04
/05

/19
99

04
/12

/19
99

04
/19

/19
99

04
/26

/19
99

05
/03

/19
99

05
/10

/19
99

05
/17

/19
99

05
/24

/19
99

05
/31

/19
99

06
/07

/19
99

06
/14

/19
99

06
/21

/19
99

06
/28

/19
99

Ta
sk

 H
ou

rs

Avg. Task Hours - W eek

Avg. Task Hours - Phase

Improving Task Hours
Average task hours per developer per week were improved from
9.6 hours to 15.1 hours through quiet time, process documentation,
more efficient meetings, etc.

+57%

Source: Allied Signal

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 72

Carnegie Mellon
Software Engineering Institute

Agenda
Why PSP and TSP for Systems Engineering?
Things That Change, Things That Don’t
Time Logging Exercise
The TSP Launch
The TSP Management Framework
TSP Quality Management

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 73

Carnegie Mellon
Software Engineering Institute

What is Quality?
Basic definition: Meeting the user’s needs

There are three categories of product quality.
• functionality
• properties (e.g., safety, security, privacy, usability)
• defects

A software-intensive product can’t be safe or secure until it
is nearly defect-free.

Most current software-intensive processes are
preoccupied with removing defects.

Little or no time is left for the other aspects of quality.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 74

Carnegie Mellon
Software Engineering Institute

The System Quality Problem
Software quality problems are largely caused by defects.
• Defects are injected by the product’s developers.
• Even experienced and capable developers inject many

defects.
• Each defect is a potential system failure.
• A significant fraction of software defects can be avoided

or mitigated by effective systems engineering.

Current practices often rely on testing to remove these
defects.

Testing is necessary but, for finding and fixing defects, it is
• time-consuming
• expensive
• ineffective

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 75

Carnegie Mellon
Software Engineering Institute

The Defect Problem
Programs are complex products.
• Small programs have thousands of instructions.
• Large programs have millions of instructions.
• These instructions are individually produced.
• Each instruction must be precisely correct, beginning

with the problem statement.

Software effort has a multiplying effort on systems
engineering defects.

On average, even experienced programmers inject a
defect about every 10-to-12 instructions.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 76

Carnegie Mellon
Software Engineering Institute

Testing
A single test
• exercises the product under one set of conditions
• produces correct or incorrect results

If there is a problem, developers must find the defect, fix it,
and then test the fix.

For products with many possible operating conditions,
many tests are required. How many of these tests are
defective?

Projects that rely on testing for quality spend a lot of time
and money on testing.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 77

Carnegie Mellon
Software Engineering Institute

0

20

40

60

80

100

120

140

160

180

200
1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

Weeks

C
um

ul
at

iv
e

D
ef

ec
ts

All
Non-Crit
Critical

Magellan Spacecraft – 22,000 LOC
Testing Takes a Long Time

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 78

Carnegie Mellon
Software Engineering Institute

Testing Effectiveness
Large complex systems cannot be exhaustively tested.
• It is impossible to test every operating condition.
• Testing must focus on only the most frequent

conditions.
• Extensive user testing finds even more defects.

Testing finds a percentage of the defects in a product,
usually less than 50%.

To get a quality product out of test, you must put a
quality product into test.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 79

Carnegie Mellon
Software Engineering Institute

Testing is Ineffective
Overload

Hardware
failure

Operator
error

Data error

Resource
contention

Configuration

Safe and secure
region = tested
(shaded)
Unsafe and insecure
region = untested
(unshaded)

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 80

Carnegie Mellon
Software Engineering Institute

Source: Xerox

1

10

100

1000

10000

Ti
m

e
in

 M
in

ut
es

Design
Review

Design
Inspect.

Code
Review

Code
Inspect

Unit
Test

System
Test

5

22

2

25 32

1405

Defect-removal Phase

Reviews and Inspections Save Time

System Test is the least
efficient phase in which to

remove defects

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 81

Carnegie Mellon
Software Engineering Institute

Why TSP is Faster and Better
With TSP
• most defects are removed by reviews and inspections
• few defects are left for testing
• testing takes relatively little time

By using TSP, organizations can
• cut testing times by 80% or more
• shorten schedules
• reduce costs
• produce better products

Testing should verify that the development process
worked well, rather than fix its exported problems.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 82

Carnegie Mellon
Software Engineering Institute

Measuring Quality
To produce quality systems, the quality of all its parts must
be measured and managed.

These measures must be made at every step in the
process.

With TSP and the underlying PSP principles, developers
use quality measures to manage the quality of their work.
The developers
• inject fewer defects
• remove most defects soon after injecting them

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 83

Carnegie Mellon
Software Engineering Institute

TSP Quality Measures
There are many potential quality measures.

With the TSP, every product element and every process step
can be measured.

Quality Measure Description

Total defect density The number of defects found in development, per
unit of size

Compile defect
density

The number of defects found in compile, per unit
of size

Test defect density The number of defects found in test, per unit of
size

Product
Quality

Percent defect free The percent of system modules or components
that had no defects in a defect removal phase

Phase yield The percent of defects in a product that are found
during the phase

Review rate The volume of code or design that is reviewed per
hour

Defect removal rate
- defects/hour

The hourly rate at which defects are removed in
reviews or inspections

Quality profile Composite picture of a module's process quality

Process
Quality

Process quality index
(PQI)

A composite value representing the five quality
profile dimensions

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 84

Carnegie Mellon
Software Engineering Institute

Quality Implications
With proper training, guidance, and motivation, most
developers can produce near-defect-free programs.

Does the same hold true for systems engineers?

With essentially defect-free products
• testing times are sharply reduced
• delivered products work
• maintenance costs are reduced

The key is the engineer’s ability to produce defect-free
products.
• measure quality
• manage quality
• personal quality commitment

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 85

Carnegie Mellon
Software Engineering Institute

Quality Goals and Plans
With data, TSP teams can
• set measurable quality goals
• make quality plans to meet these goals
• estimate the defects injected and removed in each

phase
• track the work to see if they are meeting their quality

plans

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 86

Carnegie Mellon
Software Engineering Institute

The TSP Defect Model
At each step of development, defects are injected,
removed, or possibly both.

For each step:
Defects Out = Defects In + Defects Injected –

Defects Removed

Defects In = Defects Out from the previous step

Defects Injected = function of time in production activities

Defects Removed = percentage (usually much less than
100%) of Defects In + Defects Injected

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 87

Carnegie Mellon
Software Engineering Institute

Example: Planning for Quality -1
A TSP team plans to develop 20 KLOC.

The goal is a design review yield of at least 70%.
• The plan shows 442 hours in detailed design.
• Data show that developers inject 1.3 defects per hour in

detailed design.
• Data show that they remove 3 defects per hour in

detailed design reviews.

What is the minimum design review time required to
remove these defects?

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 88

Carnegie Mellon
Software Engineering Institute

Example: Planning for Quality -2
Defects injected
• 442 hours of design
• 1.3 defects injected per hour
• 1.3*442 = 574.6 defects injected

Defect removal
• 574.6 defects total
• 3 defects removed per hour
• 574.6/3 = 191.5 hours of design review time

The team should plan on 191.5 hours of review time.

To achieve a 70% yield, they must spend at least
0.7*191.5 = 134.1 hours in design reviews.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 89

Carnegie Mellon
Software Engineering Institute

Example: Planning for Quality -3
Assume that
• no design reviews are done
• ½ of the design defects (.5 * 574 = 287) can be found

by integration testing at 5 hours/defect
• ½ of the remaining defects (i.e. ½ of ½ or .5 * 287 =

144) can be found in system testing at 10 hours/defect

How much time will integration and system testing take?

How much time will be saved by doing design reviews?

How many design defects will likely remain for your
customers to find?

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 90

Carnegie Mellon
Software Engineering Institute

Maintain Process Discipline
To produce quality systems, every part must be of high
quality.

This is possible only if every developer consistently
follows a quality process.

To consistently follow a quality process, each member of
the development team must
• be properly trained (with the PSP or equivalent)
• work on a disciplined team (with the TSP or equivalent)
• have coaching support and management guidance

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 91

Carnegie Mellon
Software Engineering Institute

Management Support
People do not naturally do disciplined work.

To ensure disciplined work, management must
• train and support the developers
• ensure that the developers’ work is guided and

monitored
• provide coaching assistance

Management must also
• build and maintain effective teams
• ensure that all team members are trained and willing to

follow the process
• recognize and reward quality work

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 92

Carnegie Mellon
Software Engineering Institute

TSP Quality Messages
High-quality processes produce high-quality products.

Quality work is not done by accident; it requires discipline,
commitment, management, and measurement.

Quality work saves time and money.

The cornerstone of a high-quality software process is early
defect removal.

TSP shows teams how to efficiently remove defects at the
earliest possible point in the process.

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 93

Carnegie Mellon
Software Engineering Institute

Your Organization is Unique…
…but most organizations share common problems.

An organization can change under duress, or it can
change in response to leadership.

Duress can lead to undesirable consequences since, by
definition, it is trying to get away from whatever is causing
the duress.

Only leadership can take an organization reliably in a
desired direction.

Where will you lead your organization?

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 94

Carnegie Mellon
Software Engineering Institute

Thank you!
Contact information: jdm@sei.cmu.edu

Contact a PSP or TSP transition partner:
http://www.sei.cmu.edu/collaborating/partners/trans.part.psp.html

Contact SEI customer relations:
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone, voice mail, and on-demand FAX: 412/268-5800
E-mail: customer-relations@sei.cmu.edu

mailto:jdm@sei.cmu.edu

© 2003-06 by Carnegie Mellon University Version 1.0 Basics of PSP and TSP for Systems Engineering - 95

Carnegie Mellon
Software Engineering Institute

Trademarks and Service Marks
The following are service marks of Carnegie Mellon University.

• Team Software ProcessSM

• TSPSM

• Personal Software ProcessSM

• PSPSM

The following are registered in the U.S. Patent & Trademark Office by
Carnegie Mellon University.

• Capability Maturity Model®
• CMM®
• CMMI®

	Agenda
	Team Software Process
	Improved Predictability
	Improved Productivity
	Improved Quality
	Accelerated Process Improvement
	TSP Results: NAVAIR AV-8B
	AV-8B CMMI “Quick Look” Profile
	NAVAIR P3-C Journey
	Improved Quality of Work Life
	Adoption
	TSP for Systems Engineering
	Building High-Performance Teams
	Personal Software Process?
	PSP-TSP Process Evolution
	PSP Improves Performance
	PSP Quality Results
	Agenda
	Non-Software Disciplines
	Introduction to Personal Process	
	Process Improvement for “Others”
	Size Measures
	Defect Definitions
	Building High-Performance Teams
	Team Management Framework
	TSP Base Measures
	TSP Project Tracking
	Tracking with TSP Measures
	TSP Weekly Tracking
	Earned Value Management
	Resource Management
	Quality Management
	Defect Removal Profile
	Agenda
	Exercise Objectives
	Basic Process Elements
	Basic Process Measures -1
	Basic Process Measures -2
	Basic Process Measures -3
	Baseline Process Phases
	A Process Script
	PSP0 Project Plan Summary
	Time Recording Log
	Defect Recording Log
	Exercise Instructions -1
	Exercise Instructions -2
	Results
	Exercise Summary
	Agenda
	Building High-Performance Teams
	TSP Structure and Flow -1
	TSP Structure and Flow -2
	TSP Structure and Flow -3
	 TSP Process Elements
	The Launch Process Meetings
	The TSP Launch Artifacts
	TSP Project Tracking -1
	TSP Weekly Meeting
	Agenda
	TSP Project Tracking -2
	The WEEK Summary
	Maintaining the Team’s Schedule
	Determining Status Against Plan -1
	Determining Status Against Plan -2
	Identifying Estimating Problems
	Interpreting the CPI
	Interpreting the CPI (continued)
	Interpreting Task Hour Data
	Interpreting Task Hour Data (continued)
	Improving Task Hours
	Agenda
	What is Quality?
	The System Quality Problem
	The Defect Problem
	Testing
	Testing Takes a Long Time
	Testing Effectiveness
	Testing is Ineffective
	Reviews and Inspections Save Time
	Why TSP is Faster and Better
	Measuring Quality
	TSP Quality Measures
	Quality Implications
	Quality Goals and Plans
	The TSP Defect Model
	Example: Planning for Quality -1
	Example: Planning for Quality -2
	Example: Planning for Quality -3
	Maintain Process Discipline
	Management Support
	TSP Quality Messages
	Your Organization is Unique…
	Thank you!
	Trademarks and Service Marks

