

Pittsburgh, PA 15213-3890

Panel: The Business Value Of CMMI ML 5

Lynn PennLockheed MartinRushby CraigHill AFBRick HeffnerNorthrop GrummanGene MilukSEI

Sponsored by the U.S. Department of Defense © 2006 by Carnegie Mellon University

Version #

Course or Lecture or Module Info. - page 1

CMMI Maturity Level 5

- •Describe CMMI ML 5 beyond OPP, QPM, OID and CAR
- •How do you operationalize ML5
- •What do you measure? What do you watch?
- •What business value results:
 - For your customers
 - For your organization

Lockheed Martin Integrated Systems & Solutions

CMMI Maturity Level 5 Foundation

M. Lynn Penn Director Quality Systems & Process Management

Page 1

Integrated Systems & Solutions Process Improvement Structure

LOCKHEED MARTIN

Communication...Training...Communication...Training

IS&S Measurement Program

Objective: The IS&S Measurement Program provides the infrastructure, data, and analysis that

- facilitates program level quantitative management,
- establishes the organization's process performance baselines,
- facilitates the alignment of organizational process performance with business objectives,
- identifies opportunities to improve program and/or organizational processes,
- models program performance to establish deployment initiatives, and
- facilitates cost, schedule, and quality estimation.

Led by: IS&S Measurement Coordinator

Reports to: Director, Quality Systems & Process Management, Mission Success

Oversight: Measurement Program Steering Committee

IS&S Approach to CMMI Measurement Requirements

Quantitative Project Management

	ć	nts be desi	6	S. Contraction	Joint Contraction	in the second second	in the second second	1100 J
The process to the right is	A	S. 5	Le ette	S S	DU D		ALL AND	, files
guantiatively managed using		N NI	and a start of the second	N NO	×.	810 ×0	Let No	No.
the indicator below	5 4 8	A'S	\$ 4° 4°	S	ر ^م ت	2 ¹⁰ 2 ¹⁰	5 5	Qex .
Earned Value, Schedule			· ·					
Earned Value, Cost								
Product Progress								
Requirements Traceability								
Requirements Stability								
TBDs and TBRs								
Design Stability								
Breadth of Testing								
Monthly Fault Profiles								
Cumulative Fault Profiles								
Defect Density	_							
Staffing								
Product Growth and Progress								
In-process Productivity								
Defect Detection Profile								
Effort Profile								
Technical Performance								
Measurements								
The critical subprocess to the right is statistically managed using the indicators below	Inspections	Inspections	Inspections	Inspections	Inspections			
Preparation Rate Control Chart								
Pace Rate Control Chart								
Defect Density Control Chart								

Organizational Measurement Analysis

IS&S Journey to CMMI L5

Drive World Class Performance / Competitiveness

Program Performance

OCKHEED MARTIN

- 95.5% of programs > \$50M have no serious problems.
- **Improved Award Fee** performance continues

down by 21%

CMMI L5

IS&S Benchmarking Maintenance

Initial Benchmark

• SCAMPI C 6-9 months after ATP

One year after Initial Benchmark:

SCAMPI B

- All programs over \$X contract value
- Some programs between \$X and \$X
 - FFP, numerous subs, not co-located team, high risk, corporate or IS&S visibility

SCAMPI C

- Non-SCAMPI B programs between \$X and \$X
- All programs (>\$X) that are following the "primes" or "customers" processes
 - A PPS mapping is required and this is done for process risk determination

REVISITS depend on "Process Risks" identified in previous benchmark – ALL PROGRAMS VISITED EVERY TWO YEARS

The Challenge

Questions?

DEFINING THE FUTURE

Business Value of CMMI Level 5

CMMI Technology Conference & User Group 13-16 November 2006

Rick Hefner, Ph.D. Director, Process Management Northrop Grumman Corporation

ntellaen

Urveillance and

econnaissance

Copyright 2005 Northrop Grumman Corporation

Two Complimentary Approaches to Process Improvement

Data-Driven (e.g., Lean Six Sigma)

- Clarify what your customer wants (Voice of Customer)
 - Critical to Quality (CTQs)
- Determine what your processes can do (Voice of Process)
 - Statistical Process Control
- Identify and prioritize improvement opportunities
 - Causal analysis of data
- Determine where your customers/competitors are going (Voice of Business)
 - Design for Six Sigma

Model-Driven (e.g., CMM, CMMI)

- Determine the industry best practice
 - Benchmarking, models
- Compare your current practices to the model
 - Appraisal, education
- Identify and prioritize improvement opportunities
 - Implementation
 - Institutionalization
- Look for ways to optimize the processes

NORTHROP GRUMMAN

Lean Six Sigma Provides the Needed Tools to Implement CMMI High Maturity

Predict

Level 4

- Understand project's process capabilities based on process performance baselines
- **Control process variation** (remove "assignable causes")
- **Predict results using process** performance models
- Manage to achieve goals

l evel 5

- Base improvement goals on future business needs
- Eliminate problem and defect causes ("common causes")
- Select, predict, and measure improvements to change the process performance baselines shift the mean; tighten the variance
- Manage change

Barriers and Challenges

Engineering process measurements are often difficult to analyze

- Inherent process variations when human creativity is involved
- Dirty (or no) data
- Vague measurement definitions, human recording errors
- Infrequent measurements
- Non-normal data
- Need for stratification/aggregation

Must demonstrate the value of quantitative data to managers

- Management style reactive vs. proactive vs. quantitative
- Less value in a chaotic environment
- Must involve customers

Launch Workshop Strategy

How Does Level 4 & 5 Benefit the Customer?

Level 5 reduces costs and improves quality (so we implement it on <u>all</u> projects)

NORTHROP GRUMMAN

Copyright 2005 Northrop Grumman Corporation

Lessons Learned

Based on over 20 Northrop Grumman CMMI Level 5 organizations

- Having multiple improvement initiatives helps encourage a change in behavior as opposed to "achieving a level"
 - Reinforces that change (improvement) is a way of life

CMMI and Six Sigma compliment each other

- CMMI can yield behaviors without benefit
- Six Sigma improvements based solely on data may miss innovative improvements (assumes a local optimum)
- The real ROI comes in institutionalizing local improvements across the wider organization
 - CMMI establishes the needed mechanisms
- Training the staff as Six Sigma Green Belts has resulted in a change of language and culture
 - Voice of Customer, data-driven decisions, causal analysis, etc.
 - Better to use the tools in everyday work than to adopt the "religion"

THROP GRUMMAN

Ogden Air Logistics Center

309 SMXG

Business Value of High Maturity

CMMI Technology Conference

> Denver, CO November 2006

BE AMERICA'S BEST

Who We Are

- 309th Software Maintenance Group, Hill AFB, Utah
- Approximately 700 engineering personnel
- Develop and maintain software for Air Force and other DoD customers
 - F-16 Block 30 OFPs
 - Mission Planning software
 - Aircraft and Missile Automatic Test Systems
 - Command and Control Software
 - IT software
- Majority of work is software maintenance
- 3 product lines--containing 40+ projects total

Our High Maturity Strategy

BE AMERICA'S BEST

Product Lines

OGDEN AIR LOGISTICS CENTER

- In addition to an organization-level SEPG we have Extended SEPGs (ESEPGs) in each product line
- ESEPG leads are:
 - Accomplished Project Managers
 - Responsible for mentoring new and less experienced PMs
 - Responsible for leading process improvement in the product-line
 - •Establishment of process baselines, and models and ensuring their use
 - •Collection of measures
 - •Leading CAR teams

ESEPG members typically made up of PMs and project leads from within the product line

Benefits 1

Improved Customer Relationships

- Some customers were not initially supportive of our process improvement efforts
- Now many customers can quantify their expectations to us
- They are comfortable with reviewing project data and even understand it
- They have more realistic expectations
- They can see that they are getting more product for their dollar than in the past

OGDEN AIR LOGISTICS CENTER

Three fold reduction in defect density while increasing Productivity by 60% (OFP)

417% increase in productivity (GTACS)

Cycle time reduced from 120 days to less than 60 days in past 2 years. (ATE)

OGDEN AIR LOGISTICS CENTER

Mike Ballard <u>mike.ballard@hill.af.mil</u>

Rushby Craig rushby.craig@hill.af.mil

SEPG 309th Software Maintenance Group Hill AFB, Utah

BE AMERICA'S BEST