

Using Voice of Customer to Advance OID – Giving The Customer a Vote In Improvement

CMMI Technology Conference

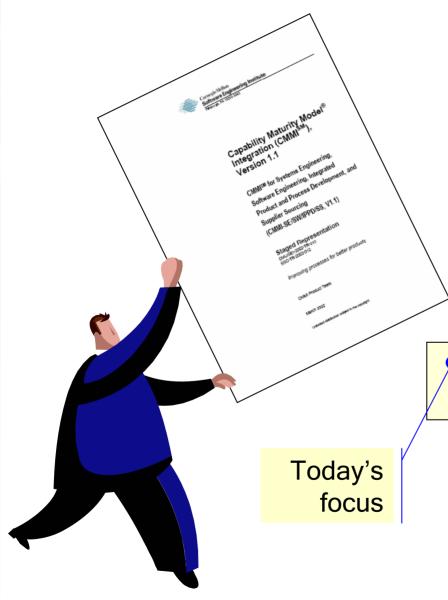
Denver, Colorado

November 11, 2006

Donald R. Corpron

Division Manager – Six Sigma Northrop Grumman Corporation

SRD-06/018


Preview...

- Intent of Organizational Innovation and Deployment
- Definition of "Voice of Customer"
- Means to Gather Voice of Customer
- Translating VoC into Criteria to Select Improvement Projects

About Organizational Innovation and Deployment...

CMMI® is a registered trademark of the

Software Engineering Institute, Carnegie Mellon University

Quality and processperformance objectives that this process area might address include the following:

- Improved product quality (e.g., functionality, performance)
- Increased productivity
- Decreased cycle time
- Greater customer and end-user satisfaction
- Shorter development or production time to change functionality, add features, or adapt to new technologies

"Voice of Customer" is...

"Voice of the Customer"
(VoC) means to
describe the wants and
needs of our Customers
and their perceptions of
quality

VoC is important because...

- High maturity organizations recognize the tie between high quality and Customer loyalty, referenceability and it's effect on business
- Quality is all non-price attributes of a product or service, tangible and intangible
- Only Customers define quality; should hear what they have to say
- Organizations need process improvements that align to "quality that Customers can see"

Understanding quality is difficult...

- Customers don't know all of their needs, or can't articulate what they are, or assume that you know them
- Customers often state their needs in fuzzy terms like, "Easy to Use"
- Customers needs and wants frequently change
- Quality is perceived, and not quantitatively measured

Follow six steps...

- ② Discover Their Needs with Interviews
- Prioritize Needs
- © ChooseImprovementsBased On Criteria

① Identify Customers/end-users

③ Categorize Needs Survey toDetermine WhatReally Matters

Gather Voice of Customer with Reactive or Proactive Systems...

Two basic types of VoC systems exist...

- Reactive Systems
- Proactive Systems

Reactive systems are...

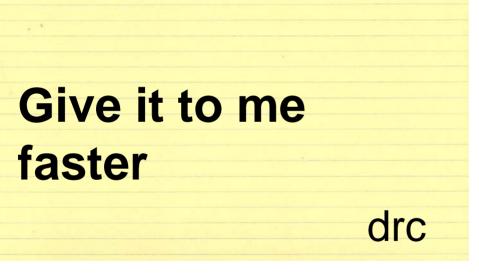
Reactive systems are those where Customer information comes to you whether you want it or not, *e.g.*,

- Customer complaints
- Award Fee Letters
- Help Desk Calls
- Contractor Performance Assessment Reports

Proactive systems are...

Proactive systems are those where we seek out information about Customers needs and wants, e.g.,

- Interviews
- Surveys
- Focus Groups
- Executive Visits
- Benchmarking


Customer interviews are good to discover needs...

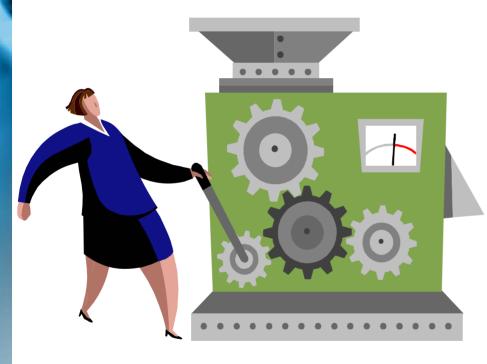
- Interviews are proactive systems to discover Customers discover needs or wants
- Capture verbatim comments that describe needs or wants (on index cards or Post-It® notes)

Copyright 2006 Northrop Grumman Corporation

Record Customers' verbatim comments on cards...

For capturing comments...

- Cards should have independent thoughts or ideas
- Write large enough so that they can be seen from afar
- Put initials on the card


Copyright 2006 Northrop Grumman Corporation

The approach to interviews...

- Provoke images and listen
- Employ open ended questions that don't imply a right or wrong answer
- Tailor questions to the situation

Find out about Customers' current approach...

How do you use the current system?

- Tell us about the last few times.
- How do you get service?
- Who or what provides the service?
- When is the service available?
- How much time to respond?
- What method to respond?

Explore what is working well...

Tell us what works well with the current approach?

- What not to change
- What advantages now

Probe problem areas...

Tell us about problems you have with the current system...

- Tell us about problems.
- Which most important to fix? Why?
- Any work-arounds?
- Any costs and negative consequences?

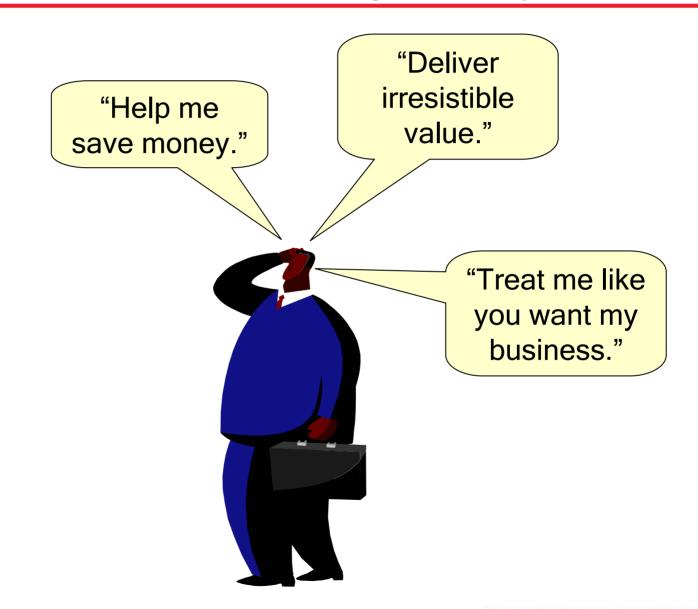
Ask about the ideal solution...

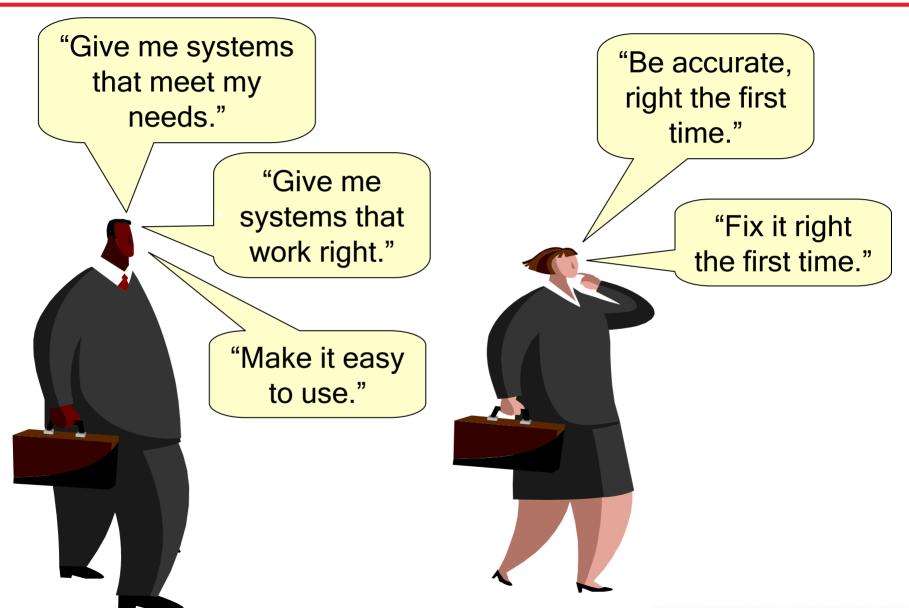
Describe what you see as an ideal system...

- What would it look like?
- How would you interact with it?
- Any other systems you've seen or heard about it?
- Who does it best?

Explore the future...

What changes do you anticipate in the next couple of years? Include changes in...


- Technology
- Your work
- Document types
- Presentation types
- Delivery formats
- Client demands or expectations
- World events


Needs Customers might tell you...

More needs Customers might tell you...

Even more needs Customers might tell you...

NORTHROP GRUMMAN

About affinitizing needs or attributes...

- The affinity diagram, or KJ method is one of the most widely used of the Japanese management and planning tools
- The affinity diagram was developed to discover meaningful groups of ideas within a raw list
- Important to let the groupings emerge naturally, using the right side of the brain, rather than according to preordained categories

Start by posting all the verbatim comments...

Team sorts cards into groups with a common thread...

Someone works with the team to paraphrase the essence...

About surveys...

- Surveys are another proactive system to collect information about Customer needs
- Combined with Likert scaling, surveys can prioritize needs

A Likert scale is...

A Likert scale is a type of survey question where respondents rate the level at which they agree or disagree with a given statement, e.g.

The system is easy to use.							
7. Strongly disagree	6. Disagree	5. Somewhat Disagree	4. Neutral	3. Somewhat Agee	2. Agree	1. Strongly Agee	

Likert scales are effective to...

- Measure "soft" things like perceptions, attitudes, or satisfaction
- Capture the state of information about process performance where only notions of performance exist.
- Verify Customer's perception of differences in "before" and "after"
- Validate that "hard" measures are good predictors of what Customers' see

Especially in software...

- In software evaluation, we can often objectively measure efficiency and effectiveness with performance metrics such as time taken or errors made
- But, Likert scales and other attitudinal scales help get at the emotional and preferential responses people have to the design

Steps to survey...

② Compose questions from interviews

Analyze with logistic regression

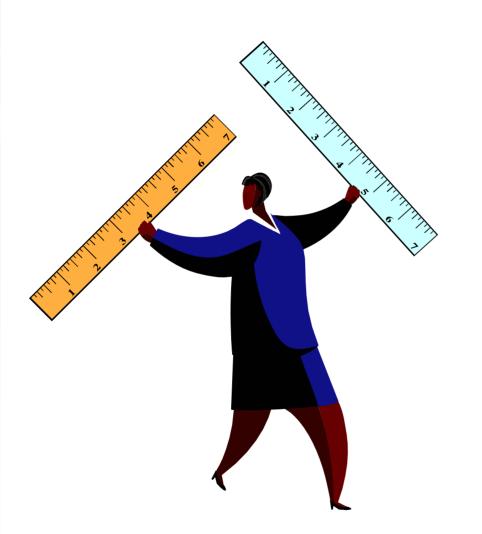
① Determine the "Money Question"

3 Administer the survey

Determine the "Money Question"...

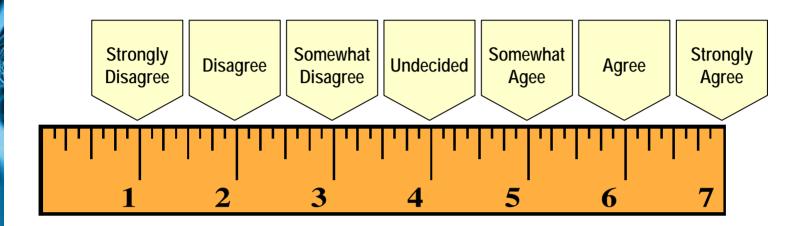
The "Money Question" is a question that addresses the overall trait of interest, *e.g.*,

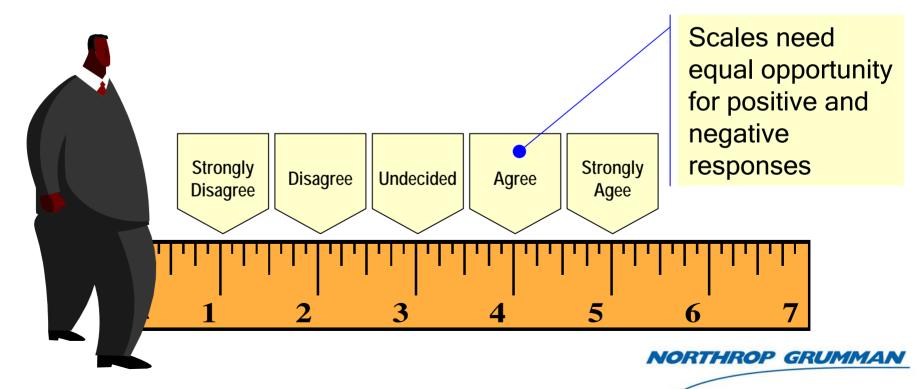
- "Overall, I am satisfied with the systems and services that Northrop Grumman delivers"
- "Overall, this training will help me do my job better"
- "Overall, I am satisfied with Northrop Grumman as a place to work"


Good practices...

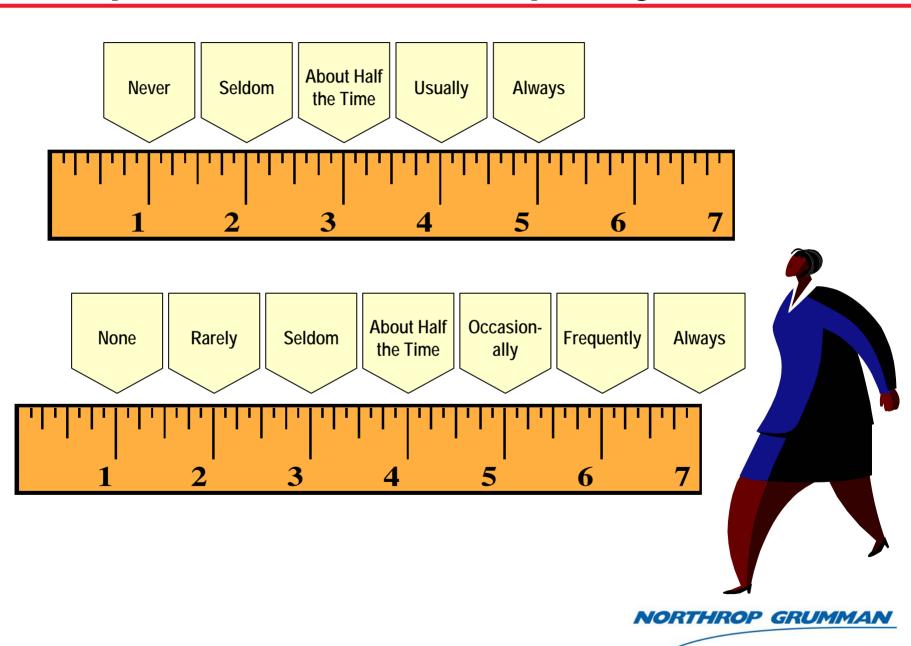
- Frame all questions as positive statements even if you are looking for problems
- Use the same scale on all questions
- Choose the number of cells on the scale, that is, five or seven, so that you will get at least five responses in each cell
- More cells are better, subject to the constraint of five in a cell

Several types of Likert scales exist...

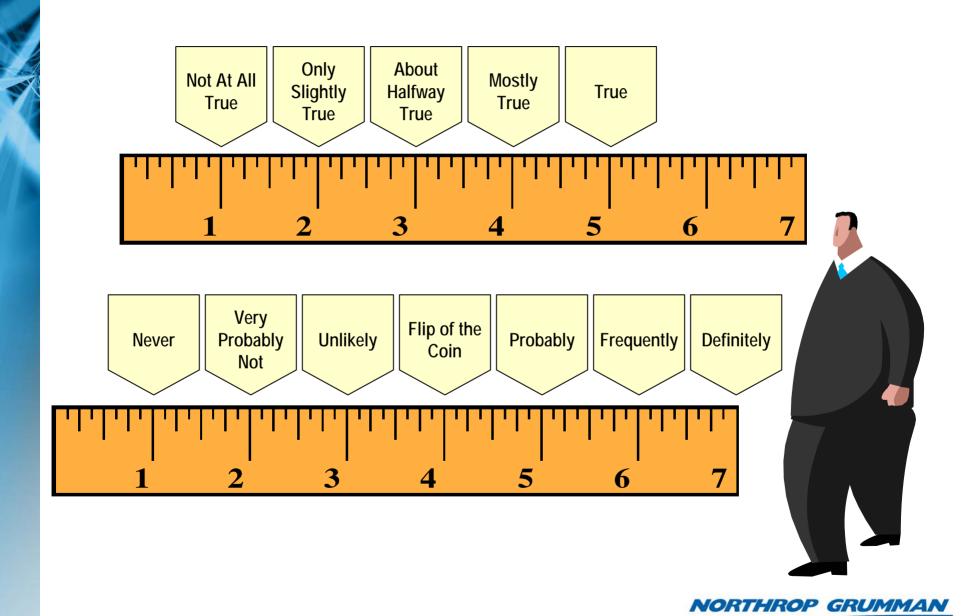



Likert scales exist for...

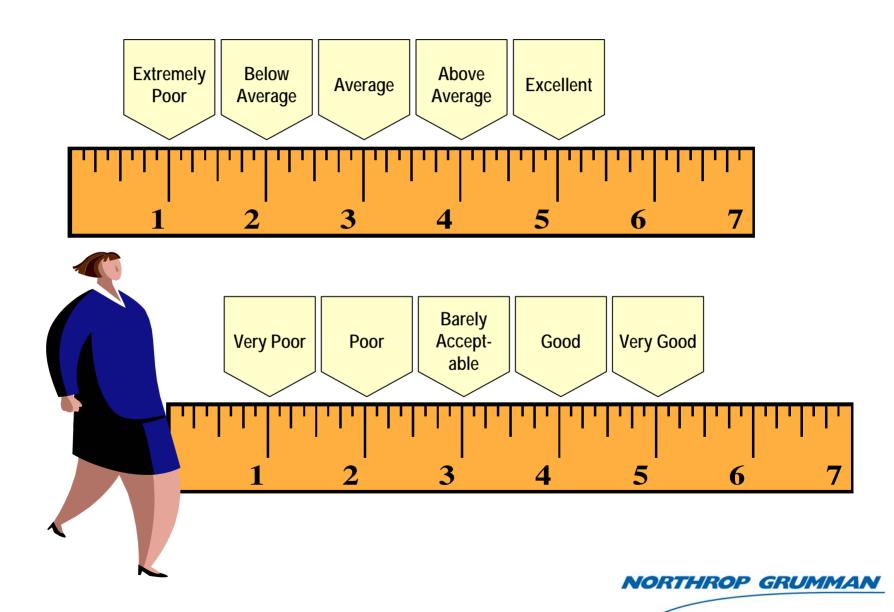
- Quality
- Importance
- Agreement
- Frequency
- Likelihood



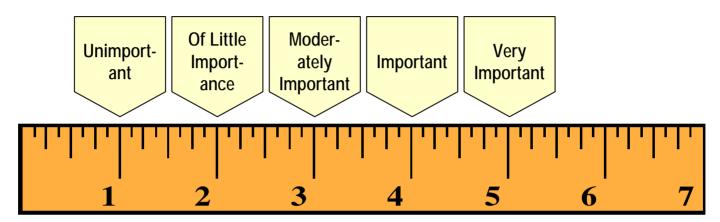
Scales for agreement...



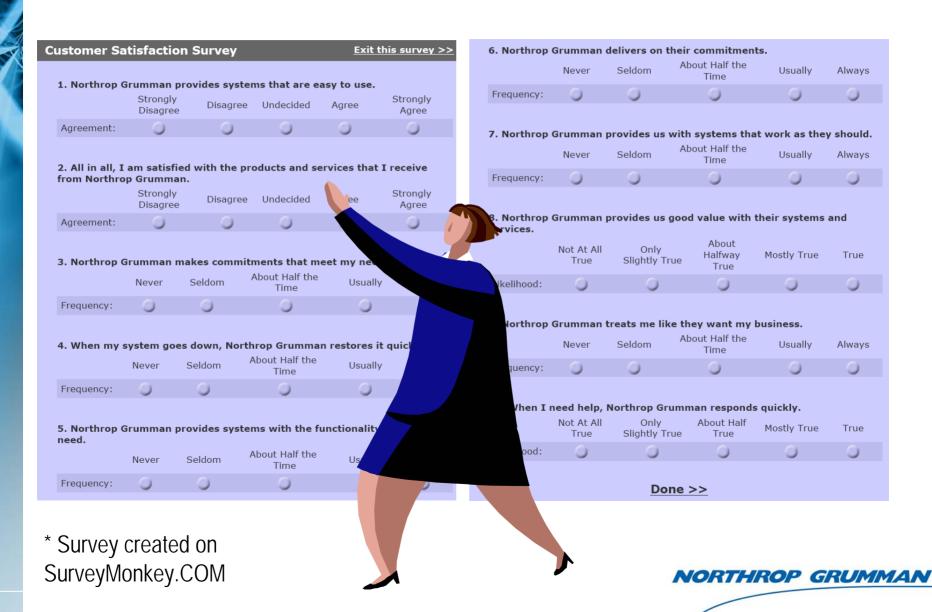
Examples of scales for frequency...



Examples of scales for likelihood...


35

Example of scales for quality...


Example for importance...

Sample survey...

Sample Results...

Surveyee	Q1	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q2	
1	E	4	3	1	4	4	5	5	3	5	
2	5	4	1	2	2	1	4	4	2	4	
3	3	3	3	3	1	5	4	3	4	3	
4	5	4	5	1	1	1	2	4	4 2		
5	ď	4	1	2	4	1	4	4	2	4	
6	4	5	3	5	4	3	3				
7	3	5	3	3	4	5	2			5	
8	2	4	3	2	3	4	3			4	
9	3	5	3	1	1	4	1	The	ese are	5	
10	3	4	3	3	2	4	4				
11	5	5	2	2	5	5	3	dummy data for purposes of illustration			
12	1	4	1	3	5	5	2				
13	3	5	2	4	5	5	2				
14	3	4	5	4	3	3	1				
15	2	5	5	1	3	1	5				
16	1	4	1	4	5	5	4				
17	5	5	3	4	3	2	1			5	
18	2	4	1	5	5	5	4			4	
				1		1	1	-1		4	
						1	4	4	τ-	5	
						3	4	4	4	4	
						5	4	3	2	3	
						2	1	3	3	4	
						5	5	5	3	5	
						2	5	2	2	2	
A		I.		4			~	ORTHR	OP GRU	UMMAN	

Analyze with ordinal logistic regression...

Response Information

Variable	Value	Count
Q2	2	1
	3	2
	4	13
	5	9
	Total	25

Logistic Regression Table

Predictor	Coef	SE Coef	Z	P
Const(1)	25.2405	14.2487	1.77	0.076
Const(2)	31.5295	16.0354	1.97	0.049
Const(3)	41.4778	20.1191	2.06	0.039
Q3	-8.36040	3.95140	-2.12	0.034
Q4	-0.841817	0.847503	-0.99	0.321
Q5	0.296463	0.775667	0.38	0.702
Q6	0.127389	0.742109	0.17	0.864
Q7	0.401630	0.750945	0.53	0.593
Q8	-1.35140	1.35373	-1.00	0.318

^{*} Regression is performed with Minitab® Release 14.2

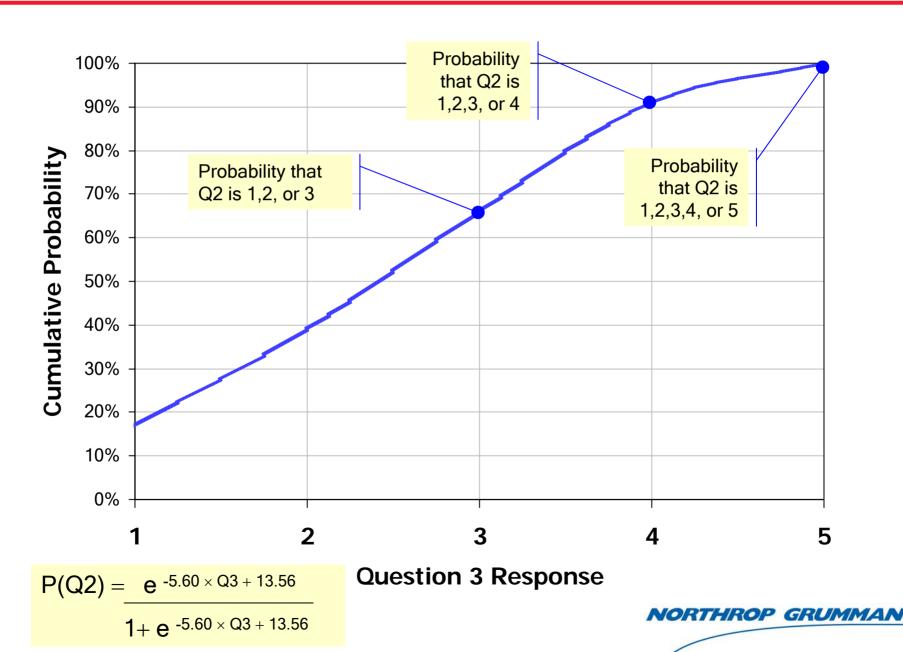
- Conventional least squares regression doesn't work on this kind of data
- Question #2 is set as the response variable, i.e., the y-variable
- All others are set as predictor variables, i.e., the x-variables
- Question #3 shows a significant relationship as its p-value is less than .05; all others are "noise."

Throwing out all the "noise" leaves a prediction equation based on Q3...

Theorem	Information
NESUULISE :	- 1111 - U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Variable	Value	Count
Q2	2	1
	3	2
	4	13
	5	9
	Total	25

Logistic Regression Table


					Odds	95%	CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Const(1)	13.5565	4.46888	3.03	0.002			
Const(2)	18.6461	5.32721	3.50	0.000			
Const(3)	25.4195	6.58253	3.86	0.000			
Q3	-5.60258	1.45034	-3.86	0.000	0.00	0.00	0.06

Log-Likelihood = -7.642

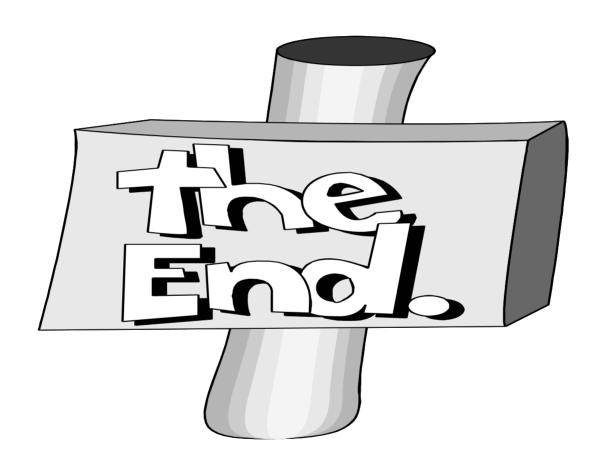

Test that all slopes are zero: G = 36.648, DF = 1, P-Value = 0.000

Q3 proves to be a good predictor of the response to Q2...

Choose improvements with a Pugh concept selection matrix...

Best choice

* Pugh Matrix is produced with QFD/Capture Professional Edition



Summary...

- Since Customers are the only ones that define quality, it's useful to get their "Voice" in selecting improvement projects
- Statistic methods like logistic regression can be used to infer Customer's importance from survey responses
- Combine VoC with other factors in a Pugh matrix to aide selections

