

Evaluating the Impact of The QuARS Requirements Analysis Tool Using Simulation

David M. Raffo, Ph.D., Portland State University Robert Ferguson, Software Engineering Institute

Agenda

Motivation What is QuARS? What is Process Simulation? What are the Benefits? Discussion Conclusions

Motivation

Good new technologies are wasted unless there is a compelling business case to use them

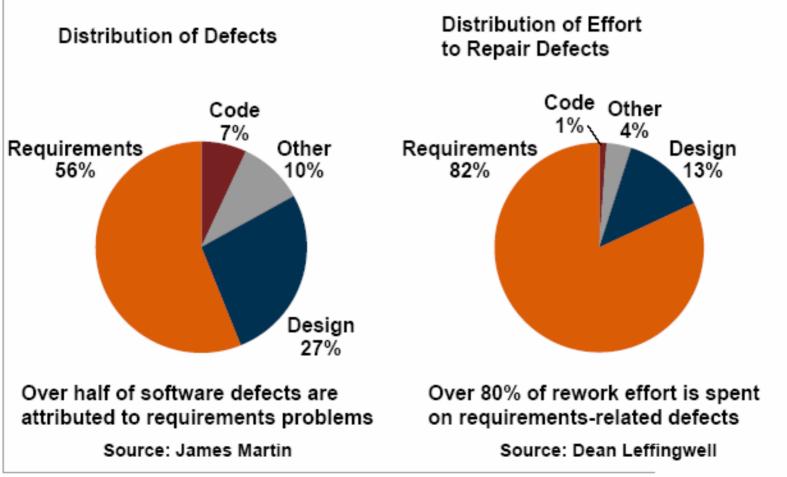
Without such a case:

- Managers not convinced
- No reallocation of scarce resources

Good technology: QuARS Requirements Checking Tool

- Increased PDs (probability of detection) (enables better detection capability during human inspection)
- Low cost

This talk:


- Present the business case
- Developed using process simulation

Carnegie Mellon Software Engineering Institute

Requirements Best Illustrate Our Challenge

Analyzing Requirements₁

An endemic and enduring problem

 Vague requirements with unstated performance criteria

QuARS: A part of the solution

- <u>Quality Analyser for Requirements Specification</u>
- Lexical, and syntactic analyses of requirements documents

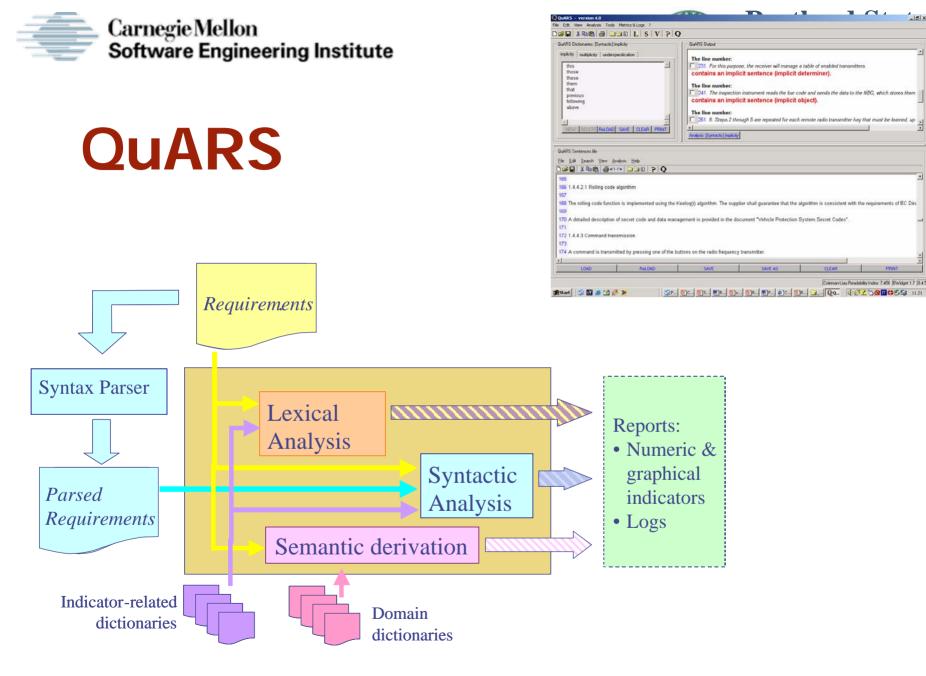
Uses:

- Real-time editing of requirements defects
- Inspections and quality assurance
- Tracking and improvement of requirements analysis processes
- Contract acceptance and appraisals

Analyzing Requirements₂

Why use it?

- Reduce cycle time and effort while producing better results than possible with tedious manual review
- Early detection and correction of often costly errors
 - Captures most common classes of errors
 - Often missed in inspections and quality assurance
 - Allowing analysts to focus on more difficult problems



Analyzing Requirements₃

How does it work?

- Natural language analysis of requirements text
- Lexical: vague, weak, optional, subjective, other terms
- Syntactic: multiple, implicit, under specified statements
- Semantic:
 - Allows screening for consistency, completeness, etc
 - Arbitrary combinations of domain, component, functionality, product quality attributes and so on

What is Process Simulation?

- Process simulation models focus on the dynamics of systems development, maintenance and acquisition projects
- They represent the process
 - as currently implemented (as-is, as-practiced, asdocumented), or
 - as planned for future implementation (to-be)
- Simulation Features
 - Use Graphical interfaces
 - Utilizes actual data/ metrics
 - Predict performance
 - Supports "What if" Analyses
 - Support business case analyses
 - Reduces risk

Applying Process Simulation = High Value Add

Evaluate Strategic Issues

- Quality Assurance, V&V and IV&V Strategy
- Distributed Software Development
- Supply Chain Design

Plan Processes

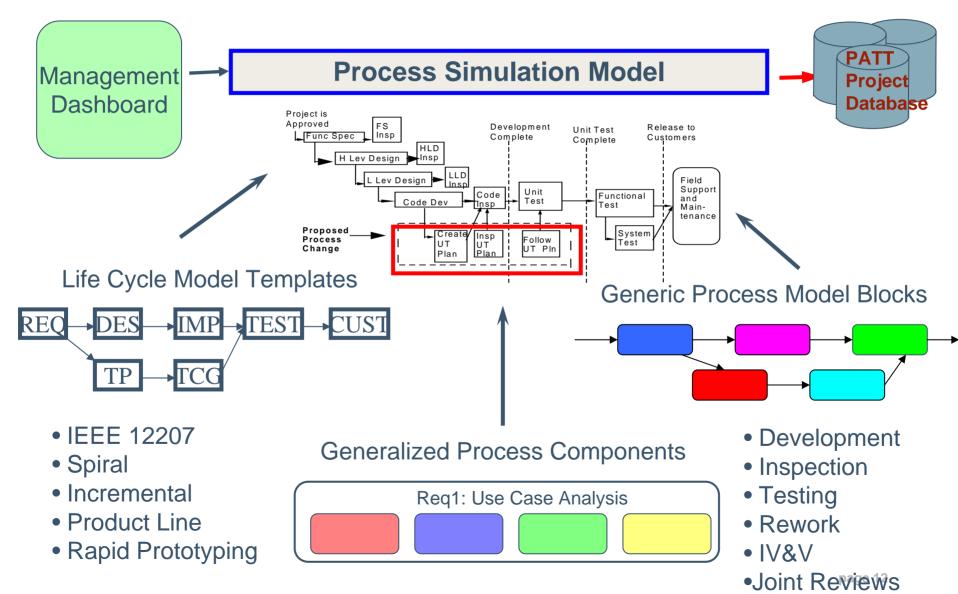
- Identify better process alternatives
- Assess the Costs and Benefits of New Tools
- Evaluate Impact of Process Improvements

Architect, Design, and Document Processes

Manage Projects Quantitatively

Estimate Project Costs from the Bottom Up

Train Project Managers

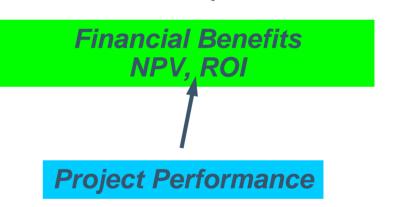

How do we use Process Simulation?

Architect the Process Model Calibrate the Data Set Run Options See the Return on Investment

Creating Process Simulation Models

Carnegie Mellon Software Engineering Institute

Development Projects


Project and Process Data

CSCI Data (Follow	s)									
No. of CSCIs		8								
CSCI names:	C&DH Estimated S	Guidance LOC	& NEF	°S	Ground	DIVINER LAMP	LOLA	LROC		
C&DH										
CSCname	Reuse	Re-eng	Ne	w	Lang	Totals	Ptotals	IVVTotals	EΡ	CF
C&DH	2500	00 -		75000		100000	120000	150000		
Total	2500	00	0	75000		100000	120000	150000	:	3
Guidance & Nav										
CSCname										
Guidance & Nav	2500	00		12000		37000	37000	39000		
Total	2500	00	0	12000		37000	37000	39000	1	2

SW Process Simulation Model

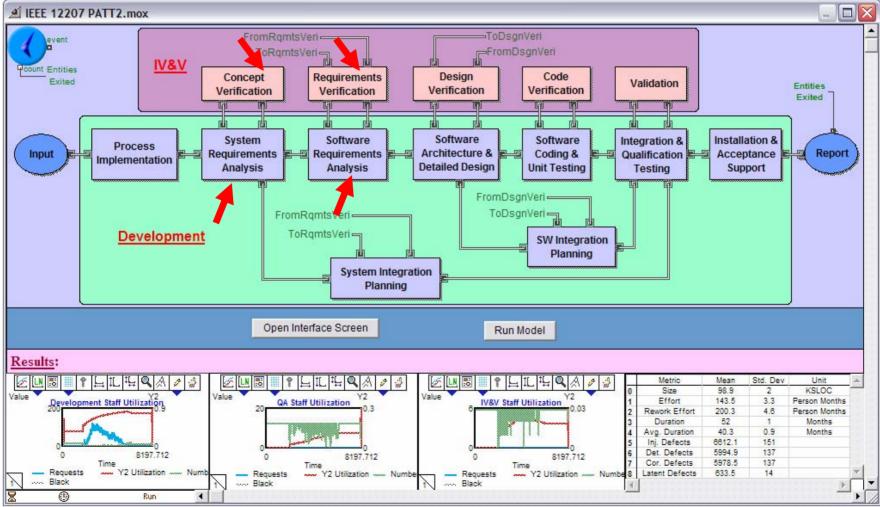
Pillart Entres Entred				Design Verification	Code Verification	Validation		Evilian Esilian
	Nomentation Re	Analysis 70 FromRa	Software Requirements Analysis mtsVeri		Software Coding & Unit Testing poweri- sweri- sweri- sweri- sweri- sweri- sweri- sweri- sweri- sweri- sweri- sweri- pionning	M Dr Audification & Testing To for	Acceptance Support	Report

Portland State

Inv/coity

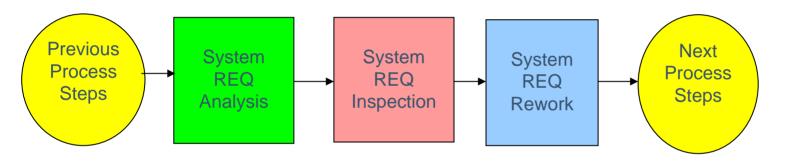
Better

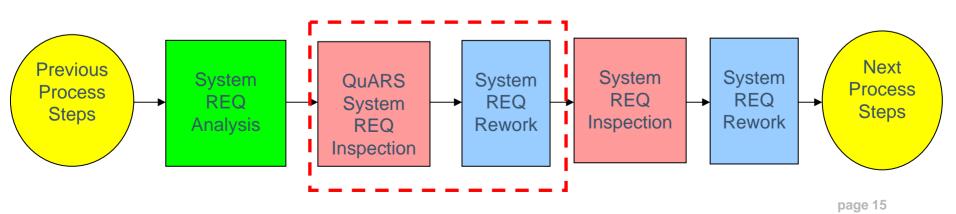
Process


Decisions

Proje	eet Id:	1						
	<u>Run Set</u>	<u>Size</u> Mean Std. Dev	<u>Effort</u> Mean Std Dev	<u>Rework Effori</u> Mean Stil. Dev	<u>Duration</u> Mean Stel Dev	<u>Avg Duration</u> Mean Stil Dev	<u>Carrected Defects</u> Mean Stil Dev	<u>Latent Defect</u> Mear Std De
	1	58.00 1.63	54.321.35 1.484.76	10.568.58 217.46	3.572.02 63.39	2.381.00 55.76	2.756.13 77.96	143.6 3.7
	2	58.00 1.63	53 666 85 1.511.91	9 573 17 298.02	3 457 40 63.54	2.266.06 66.44	2 759 38 76.79	140.4 4.8
	3	58.00 1.63	54 321 35 1.484.76	10.568.58 217.46	3 572 02 63.39	2.381.00 55.75	2 756 13 77.96	143.6 3.7
	4	58.00 1.63	53 900 94 1.445.09	9 9 43 53 202.73	3 502 52 52.74	2.310.60 53.75	2 758 30 77.41	141 4 43

NASA Model – Includes IV&V Layer with IEEE 12207 SW Development LC

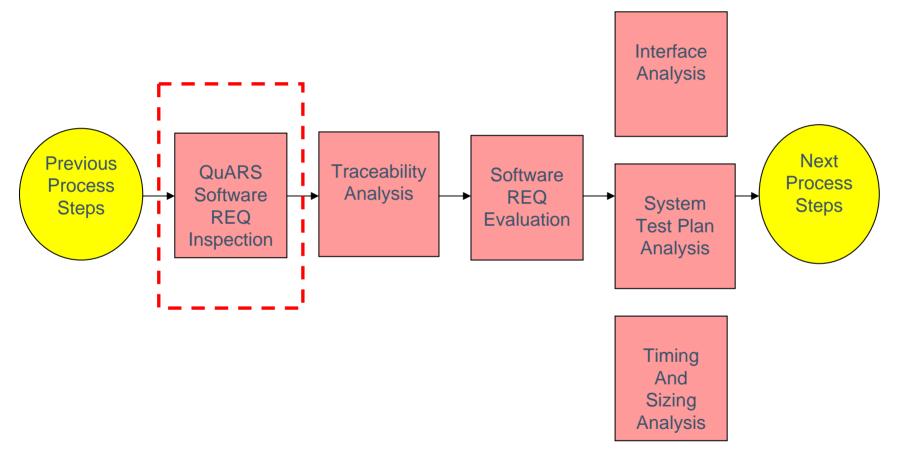




System and Software Requirements Processes

AS-IS

TO-BE



University

IV&V at Requirements Verification

Impact of QuARS - Assumptions

Have the ability to look at a variety of process improvements

Assumptions:

- Typical Manned Mission using IEEE 12207 Process
- Includes IV&V
- 100 KSLOC Project
- Industry standard data for Earned Value, defect detection rates
- Organizational data for productivity, defect injection rates
- Project specific data for IV&V
- Pilot study data for capabilities of QuARS

Impact of QuARS - Assumptions

In the case of QuARS

- 1. Productivity of the tool => 10 KLOC/ Person hour
- 2. QuARS type defects => 37% of Requirements Defects
- 3. QuARS detects 100% of lexical and (i.e. QuARS detectable defects)
- Improves defect detection capability at Requirements Inspections (+5 to10%)
- 5. Cost of training and associated SEPG activities 1 person-month
- 6. Cost of tool TBD

Secondary Effects of Using QuARS

- Improves clarification of requirements (i.e. improves productivity in design of + 5%
- Improves Engineering design decisions (reduced injection of design defects of 5%
- 3. Improves test planning and test case generation productivity + 5%)
- 4. Improves test case generation (i.e. less investigation and rework -5%)

Cases Looked at

QuARS as a V&V activity within the project.

- Look at applying QuARS at the Systems Requirements and Software Requirements phases, both.
- Assuming 100% and 50% Requirements inspections
- Before and after inspection
- When injection of QuARS type defects is at minimum (i.e. 20%)

QuARS as an IV&V activity outside of the project

- Look at applying QuARS at the Systems Requirements and Software Requirements phases, both.
- Assuming 100% and 50% Requirements inspections
- When injection of QuARS type defects is at minimum (i.e. 20%)

Key Questions Evaluated

Did QuARS provide a value?

Is the tool more effective in V&V or IV&V mode?

Under what project conditions is the tool most useful?

- Applying QuARS before or after Requirements Inspection
- Applying QuARS when different amount of requirements are inspected

Is QuARS still worth using when lexical defects are at a minimum? (max reduction through training achieved)

What is the amount that NASA should be willing to pay for the tool?

Portland State

University

Results - Applying QuARS in V&V Mode at Different Phases

	on to Dasenne								
		Effort incl.			IV&V				
		IV&V	Effort	RWK_Efrt	Effort	Duration	Avg. Dur	Crctd_Dfcts	Ltnt_Dfcts
Qu	ARS at Sys Req	1,659	1,670	1,312	(11)	103	49	34	18
	p value	0	0	0	1	0	0	1	0
Qu	ARS at Sw Req	5,142	5,128	4,779	14	377	72	(10)	55
	p value	0	0	0	1	0	0	1	0
QuARS a	at Sys & Sw Req	5,268	5,285	4,926	(17)	362	81	(10)	59
	p value	0	0	0	1	0	0	1	0

- Application of QuARS at Systems and Software Requirements offers a value
- Sweet spot is to apply QuARS after Software Requirements
- QuARS is approximately +10% to +15% benefit when applied before Requirements inspection rather than after
- QuARS has approximately +3% increased performance when project does not have IV&V

Results – Less Than 100% of Project is Inspected

Compari	son to Baseli	ine								
			Effort incl. IV&V	Effort	Rwrk_Efrt	IV&V Effort	Duration	Avg. Dur	Crctd_Dfcts	Ltnt_Dfcts
	SC5.1		2133	2165	1800	-32			26	
		p value	0	0	0	1	0	0	1	0
	SC5.2		6590	6576	6208	13	503	57	-32	75
		p value	0	0	0	1	0	0	1	0
	SC5.3		6287	6340	5973	-53	443	73	-23	71
		p value	0	0	0	0	0	0	1	0

- The value of QuARS increases when applied to projects that experience less than 100% inspections (this instance = 50%)
- At 50% inspection, +20% to +30% increased effort savings, +17% to +%42% reduction in latent defects

University

Results - Applying QuARS in IV&V Mode at Different Phases

Comparis	on to Baseline								
		Effort incl. IV&V	Effort	Rwrk_Efrt	IV&V Effort	Duration	Avg. Dur	Crctd_Dfcts	Ltnt_Dfcts
QuARS	at Concept IV&V	1,448	1,679	1,322	(231)	114	69	32	17
	p value	0	0	0	0	0	0	1	0
QuA	ARS at REQ IV&V	2,427	2,717	2,341	(290)	191	64	19	29
	p value	0	0	0	0	0	0	1	0
QuA	ARS at both IV&V	2,900	3,374	2,976	(474)	237	98	11	36
	p value	0	0	0	0	0	0	1	0

Value of QuARS is significantly reduced when applied in IV&V mode. 87%, 47%, 55% for effort; 94%, 52%, 61%

Secondary effects not experienced by the project

Slight make up on effort due to cost shift to IV&V

Results – QuARS Under Different Defect Injection Rates

Lexical defects reduced from 37% of Requirements defects to 20% (46% reduction)

Believed that even with training and other defect prevention measures, lexical defects will still exist at 20% level or greater

For V&V

- Effort savings reduced by 28% to 36%
- Quality savings reduced by 28% to 38%

For IV&V

- Effort savings reduced by 35% to 43%
- Quality savings reduced by 26% to 36%

Results – QuARS Under Different Defect Injection Rates

Comparis	on to Basel	ine								
			Effort incl.			IV&V				
			IV&V	Effort	Rwrk_Efrt	Effort	Duration	Avg. Dur	Crctd_Dfcts	Ltnt_Dfcts
Qu	IARS at Sys	s Req	1,186.78	1,199.64	858.23	(12.86)	58.17	42.36	39.21	13.08
	р	value	0.02	0.02	0.00	0.84	0.25	0.08	0.51	0.04
Qu	ARS at Sw	/ Req	3,179.53	3,187.55	2,890.71	(8.02)	212.62	44.53	13.00	34.37
	р	value	0.00	0.00	0.00	0.90	0.00	0.05	0.83	0.00
QuARS a	at Sys & Sw	/ Req	3,354.04	3,295.10	2,994.34	58.94	235.76	62.62	13.69	36.25
	р	value	0.00	0.00	0.00	0.33	0.00	0.01	0.82	0.00

Comparison to Baseline								
	Effort incl.			IV&V				
	IV&V	Effort	Rwrk_Efrt	Effort	Duration	Avg. Dur	Crctd_Dfcts	Ltnt_Dfcts
QuARS at Concept IV&V	874.24	1,174.63	833.20	(300.39)	17.48	41.67	36.16	12.66
p value	0.08	0.02	0.00	0.00	0.71	0.08	0.54	0.05
QuARS at REQ IV&V	1,571.89	1,747.96	1,396.61	(176.07)	123.17	45.22	30.78	17.48
p value	0.00	0.00	0.00	0.00	0.01	0.06	0.60	0.01
QuARS at both	1,643.16	2,123.36	1,758.96	(480.20)	86.25	61.77	24.49	23.22
p value	0.00	0.00	0.00	0.00	0.07	0.01	0.68	0.00

Return on Investment Inputs

Input Parameters for Financial Cal	<u>culation</u>				
-					
Input					
Cost of Development Staff per Hour	\$ 100.00		Org internal investment rate cut-off (aka hurdle rate)	20.00%	
Cost of IV&V Staff per Hour	\$ 100.00	_			
Implementation Cost (Tool Cost)	\$ -	То	be determined		
Increase in Revenue per Month	\$-	if re	elease early		
Cost to Correct Latent Defects	\$ 25,500.00	per	defect		
	1.5 person-mont	h to f	ix 1 defect		
Assumptions					
Work Hours per Month	170		Work Hours per Year	2,040	
Latent Defects will be corrected within the first	36	mo	nths		
If releasing the system early by	3	mo	nths or more, there will be an increase	e in revenue	es (due to
Effort saving occurs at t	ime = duration				
Duration saving occurs at time			month	170	hours
Latent defect saving occurs at time		-			hours

NPV and Risk Results Summary

	0.4001	
Config.	QuARS	Value
coning.	Mean	Std Dev
SC1	\$282,813	\$24,649
SC2	\$869,221	\$45,055
SC3	\$933,118	\$54,769
SC4.1	\$265,149	\$20,884
SC4.2	\$837,796	\$48,780
SC4.3	\$876,587	\$46,510
SC6	\$266,008	\$19,413
SC7	\$435,653	\$29,121
SC8	\$541,538	\$34,524

Config.	QuARS	Value
Coning.	Mean	Std Dev
SC1	\$202,714.31	25,167.62
SC2	\$539,454.13	30,814.83
SC3	\$576,941.35	35,664.52
SC6	\$182,139.63	16,474.07
SC7	\$270,398.43	19,742.96
SC8	\$333,364.85	22,189.47

- PR(NPV>0)=100%
- PR(NPV>\$100K) = 100%
- Overall, QuARS shows a reduced NPV between -28% to -38% compared to higher defect injection rate (Lowest NPV = \$182K)

Scenario Descriptions

SC 1: Turn on QuARS at System Requirments		
SC 2: Turn on QuARS at Software Requirements		
SC 3: Turn on QuARS at both Systems and Softw	are	
SC 4.1: Turn on QuARS after System Requirments	Insp	
SC4.2: Turn on QuARS after Software Requirment	ts Insp	
SC4.3: Turn on QuARS after both System and Sof	tware Requirme	ents Insp
SC6: Turn on QuARS at Concept Verification		
SC7: Turn on QuARS at Requirements Verification		

SC8: Turn on QuARS at Concept Verification and Requirements Verification

Discussion

Straight forward and quick analysis (1 week)

- Main effects analysis
- Secondary effects analysis
- Sensitivity analysis
- Management Questions
- Results

NASA is currently engaged in conducting a 6 month trial of three different requirements analysis tools

Will use results of their study to validate the model

Still need to run simulation model to compute overall impact of the tool and perform business case analysis

Conclusions

QuARS is worth while

- Value to the project @ 20% hurdle rate ranges from \$280K to \$930K in V&V mode and \$266K to 540K in IV&V mode
- Cost of tool is not set yet
- PR(NPV>100K) = 100%

Analysis showed that results were sensitive to

- % of project inspected
- % Lexical defects injected
- Labor rates, rework costs, hurdle rate

For these parameters, it is important to be clear about their values for projects that NASA plans to implement QuARS to

Straight forward analysis took about 1 week.

Conclusions

Process Simulation is NOT a Silver Bullet

Many High Value Add Ways to Use Process Simulation

- Evaluate Strategic Issues Quality Assurance Strategy
- Plan Processes
 - Assess the Costs and Benefits of New Tools
- Architect, Design, and Document Processes
- Manage Projects Quantitatively (CMMI L4)
- Estimate Project Costs from the Bottom Up
- Train Project Managers

See SEI Technical Report on Transitioning Process Simulation into Organizations (Spring 2007)

Contact Info

David M. Raffo, Ph.D. Visiting Scientist, Software Engineering Institute Associate Professor, Portland State University Principal, Quantel, Inc. <u>raffod@pdx.edu</u> c) 503-939-1720

Robert Ferguson Software Engineering Institute <u>rwf@sei.cmu.edu</u>

The End

Questions?

